Discovery and characterization of virulence associated functional metabolites in Escherichia coli based on functional metabolomics strategy(siderophores metabolomics-2)
Project description:Autotransporter (AT) proteins constitute a large family of extracellular proteins that contribute to bacterial virulence. A novel AT adhesin gene, aatB, was identified in avian pathogenic Escherichia coli (APEC) DE205B via genomic analyses. The open reading frame of aatB was 1,017 bp, encoding a putative 36.3-kDa protein which contained structural motifs characteristic for AT proteins: a signal peptide, a passenger domain, and a translocator domain. The predicted three-dimensional structure of AatB consisted of two distinct domains, the C-terminal β-barrel translocator domain and an N-terminal passenger domain. The prevalence analyses of aatB in APEC indicated that aatB was detected in 26.4% (72/273) of APEC strains and was strongly associated with phylogenetic groups D and B2. Quantitative real-time reverse transcription-PCR analyses revealed that AatB expression was increased during infection in vitro and in vivo. Moreover, AatB could elicit antibodies in infected ducks, suggesting that AatB is involved in APEC pathogenicity. Thus, APEC DE205B strains with a mutated aatB gene and mutated strains complemented with the aatB gene were constructed. Inactivation of aatB resulted in a reduced capacity to adhere to DF-1 cells, defective virulence capacity in vivo, and decreased colonization capacity in lung during systemic infection compared with the capacities of the wild-type strain. Furthermore, these capacities were restored in the complementation strains. These results indicated that AatB makes a significant contribution to APEC virulence through bacterial adherence to host tissues in vivo and in vitro. In addition, biofilm formation assays with strain AAEC189 expressing AatB indicated that AatB mediates biofilm formation.
Project description:Carbapenem-resistant Escherichia coli has emerged as a major public health issue across the world. This study was aimed to determine the virulence content and phylogenetic groups of carbapenemase-producing E. coli isolates in southwest Iran. One hundred and fifty-two non-duplicate E. coli isolates were collected from various clinical samples. Antibiotic susceptibility and minimum inhibitory concentrations (MIC) were determined according to the Clinical and Laboratory Standards Institute (CLSI) guidelines by Kirby-Bauer disc diffusion and agar dilution methods. Phenotypic screening of carbapenemase enzymes was performed by modified Hodge test (MHT). Detection of carbapenemase genes, phylogenetic groups, and virulence-associated genes were also performed by the PCR assay. The highest and lowest resistance rates were observed against mezlocillin (70.4%) and doripenem (13.1%), respectively. Out of 28 isolates that were resistant to carbapenem antibiotics, 12 (7.9%) strains were phenotypically carbapenemase producers. The blaOXA-48 was the predominant carbapenemase gene, detected in 58.3% of isolates, followed by blaIMP (41.7%) and blaNDM (8.3%). None of the isolates harbored blaVIM and blaKPC genes. Among the twelve carbapenemase-producing strains, urinary isolates were mostly classified into B2 (41.7%) and D (25%) phylogenetic groups, while other clinical isolates belonged to B1 (25%) and A (8.3%) groups. The frequency of virulence-associated genes was also investigated in all isolates and ranged from 6.6% for hly to 75% for fimA. The emergence of carbapenemase-producing strains is a growing concern to public health. Therefore, the proper implementation of monitoring programs is crucial for limiting their dissemination.
Project description:Strains of urinary tract associated E. coli both recent isolates and from the ECOR collection and non pathogenic E. coli strains were analyzed. Replicates were performed to establish the reproduciblity, then single experiments were performed there on.
Project description:The Escherichia coli protein Fis is remarkable for its ability to interact specifically with DNA sites of highly variable sequences. The mechanism of this sequence-flexible DNA recognition is not well understood. In a previous study, we examined the contributions of Fis residues to high-affinity binding at different DNA sequences using alanine-scanning mutagenesis and identified several key residues for Fis-DNA recognition. In this work, we investigated the contributions of the 15-bp core Fis binding sequence and its flanking regions to Fis-DNA interactions. Systematic base-pair replacements made in both half sites of a palindromic Fis binding sequence were examined for their effects on the relative Fis binding affinity. Missing contact assays were also used to examine the effects of base removal within the core binding site and its flanking regions on the Fis-DNA binding affinity. The results revealed that: (1) the -7G and +3Y bases in both DNA strands (relative to the central position of the core binding site) are major determinants for high-affinity binding; (2) the C(5) methyl group of thymine, when present at the +4 position, strongly hinders Fis binding; and (3) AT-rich sequences in the central and flanking DNA regions facilitate Fis-DNA interactions by altering the DNA structure and by increasing the local DNA flexibility. We infer that the degeneracy of specific Fis binding sites results from the numerous base-pair combinations that are possible at noncritical DNA positions (from -6 to -4, from -2 to +2, and from +4 to +6), with only moderate penalties on the binding affinity, the roughly similar contributions of -3A or G and +3T or C to the binding affinity, and the minimal requirement of three of the four critical base pairs to achieve considerably high binding affinities.
Project description:Escherichia coli has been used as an indicator organism for fecal contamination of water and other environments and is often a commensal organism in healthy animals, yet a number of strains can cause disease in young or immunocompromised animals. In this study, 281 E. coli isolates from bovine, porcine, chicken, canine, equine, feline, and other veterinary sources were analyzed by BOXA1R PCR and by virulence factor profiling of 35 factors to determine whether they had utility in identifying the animal source of the isolates. The results of BOXA1R PCR analysis demonstrated a high degree of diversity; less than half of the isolates fell into one of 27 clusters with at least three isolates (based on 90% similarity). Nearly 60% of these clusters contained isolates from more than one animal source. Conversely, the results of virulence factor profiling demonstrated clustering by animal source. Three clusters, named Bovine, Chicken, and Porcine, based on discriminant components analysis, were represented by 90% or more of the respective isolates. A fourth group, termed Companion, was the most diverse, containing at least 84% of isolates from canine, feline, equine, and other animal sources. Based on these results, it appears that virulence factor profiling may have utility, helping identify the likely animal host species sources of certain E. coli isolates.
Project description:Testing 1,666 fecal or intestinal samples from healthy and diarrheic pigs, we obtained hemolytic Escherichia coli isolates from 593 samples. Focusing on hemolytic E. coli isolates without virulence-associated genes (VAGs) typical for enteropathogens, we found that such isolates carried a broad variety of VAGs typical for extraintestinal pathogenic E. coli.
Project description:The translational GTPase BipA regulates the expression of virulence and pathogenicity factors in several eubacteria. BipA-dependent expression of virulence factors occurs under starvation conditions, such as encountered during infection of a host. Under these conditions, BipA associates with the small ribosomal subunit. BipA also has a second function to promote the efficiency of late steps in biogenesis of large ribosomal subunits at low temperatures, presumably while bound to the ribosome. During starvation, the cellular concentration of stress alarmone guanosine-3', 5'-bis pyrophosphate (ppGpp) is increased. This increase allows ppGpp to bind to BipA and switch its binding specificity from ribosomes to small ribosomal subunits. A conformational change of BipA upon ppGpp binding could explain the ppGpp regulation of the binding specificity of BipA. Here, we present the structures of the full-length BipA from Escherichia coli in apo, GDP-, and ppGpp-bound forms. The crystal structure and small-angle x-ray scattering data of the protein with bound nucleotides, together with a thermodynamic analysis of the binding of GDP and of ppGpp to BipA, indicate that the ppGpp-bound form of BipA adopts the structure of the GDP form. This suggests furthermore, that the switch in binding preference only occurs when both ppGpp and the small ribosomal subunit are present. This molecular mechanism would allow BipA to interact with both the ribosome and the small ribosomal subunit during stress response.