Project description:The lack of effective screening strategies for high-grade serous carcinoma (HGSC), a subtype of ovarian cancer (OC) responsible for 70-80% of OC related deaths, emphasizes the need for new diagnostic markers and a better understanding of disease pathogenesis. Capillary electrophoresis (CE) coupled with high-resolution mass spectrometry (HRMS) offers high selectivity and sensitivity for ionic compounds, thereby enhancing biomarker discovery. Recent advances in CE-MS include small, chip-based CE systems coupled with nanoelectrospray ionization (nanoESI) to provide rapid, high-resolution analysis of biological specimens. Here, we describe the development of a targeted microchip (µ) CE-HRMS method, with an acquisition time of only 3 min and sample injection volume of 4nL, to analyze 40 target metabolites in serum samples from a triple-mutant (TKO) mouse model of HGSC. Extracted ion electropherograms showed sharp, baseline resolved peak shapes, even for structural isomers such as leucine and isoleucine. All calibration curves of the analytes maintained good linearity with an average R2 of 0.994, while detection limits were in the nM range. Thirty metabolites were detected in mouse serum with recoveries ranging from 78 to 120%, indicating minimal ionization suppression and good accuracy. We applied the µCE-HRMS method to biweekly-collected serum samples from TKO and TKO control mice. A time-resolved analysis revealed characteristic temporal trends for amino acids, nucleosides, and amino acid derivatives. These metabolic alterations are indicative of altered nucleotide biosynthesis and amino acid metabolism in HGSC development and progression. A comparison of the µCE-HRMS dataset with non-targeted ultra-high performance liquid chromatography (UHPLC)-MS results showed identical temporal trends for the five metabolites detected with both platforms, indicating the µCE-HRMS method performed satisfactorily in terms of capturing metabolic reprogramming due to HGSC progression while reducing the total data collection time three-fold.
Project description:The ability to charge huge biomolecules without breaking them apart has made matrix-assisted laser desorption/ionization (MALDI) mass spectrometry an indispensable tool for biomolecular analysis. Conventional, empirically selected matrices produce abundant matrix ion clusters in the low-mass region (<500 Da), hampering the application of MALDI-MS to metabolomics. An ionization mode of MAILD, a rational protocol for matrix selection based on Brønsted-Lowry acid-base theory and its application to metabolomics, biological screening/profiling/imaging, and clinical diagnostics is illustrated. Numerous metabolites, covering important metabolic pathways (Krebs' cycle, fatty acid and glucosinolate biosynthesis), were detected in extracts, biofluids, and/or in biological tissues (Arabidopsis thaliana, Drosophila melanogaster, Acyrthosiphon pisum, and human blood). This approach moves matrix selection from "black art" to rational design and sets a paradigm for small-molecule analysis via MALDI-MS.
Project description:Targeted detection is one of the most important methods in mass spectrometry (MS)-based metabolomics; however, its major limitation is the reduced metabolome coverage that results from the limited set of targeted metabolites typically used in the analysis. In this study we describe a new approach, globally optimized targeted (GOT)-MS, that combines many of the advantages of targeted detection and global profiling in metabolomics analysis, including the capability to detect unknowns, broad metabolite coverage, and excellent quantitation. The key step in GOT-MS is a global search of precursor and product ions using a single liquid chromatography-triple quadrupole (LC-QQQ) mass spectrometer. Here, focused on measuring serum metabolites, we obtained 595 precursor ions and 1 890 multiple reaction monitoring (MRM) transitions, under positive and negative ionization modes in the mass range of 60-600 Da. For many of the MRMs/metabolites under investigation, the analytical performance of GOT-MS is better than or at least comparable to that obtained by global profiling using a quadrupole-time-of-flight (Q-TOF) instrument of similar vintage. Using a study of serum metabolites in colorectal cancer (CRC) as a representative example, GOT-MS significantly outperformed a large targeted MS assay containing ∼160 biologically important metabolites and provided a complementary approach to traditional global profiling using Q-TOF-MS. GOT-MS thus expands and optimizes the detection capabilities for QQQ-MS through a novel approach and should have the potential to significantly advance both basic and clinical metabolic research.
Project description:BackgroundOvarian cancer is the most lethal gynecologic malignancy in women, and high-grade serous ovarian cancer (HGSOC) is the most common subtype. Currently, no clinical test has been approved by the FDA to screen the general population for ovarian cancer. This underscores the critical need for the development of a robust methodology combined with novel technology to detect diagnostic biomarkers for HGSOC in the sera of women. Targeted mass spectrometry (MS) can be used to identify and quantify specific peptides/proteins in complex biological samples with high accuracy, sensitivity, and reproducibility. In this study, we sought to develop and conduct analytical validation of a multiplexed Tier 2 targeted MS parallel reaction monitoring (PRM) assay for the relative quantification of 23 putative ovarian cancer protein biomarkers in sera.MethodsTo develop a PRM method for our target peptides in sera, we followed nationally recognized consensus guidelines for validating fit-for-purpose Tier 2 targeted MS assays. The endogenous target peptide concentrations were calculated using the calibration curves in serum for each target peptide. Receiver operating characteristic (ROC) curves were analyzed to evaluate the diagnostic performance of the biomarker candidates.ResultsWe describe an effort to develop and analytically validate a multiplexed Tier 2 targeted PRM MS assay to quantify candidate ovarian cancer protein biomarkers in sera. Among the 64 peptides corresponding to 23 proteins in our PRM assay, 24 peptides corresponding to 16 proteins passed the assay validation acceptability criteria. A total of 6 of these peptides from insulin-like growth factor-binding protein 2 (IBP2), sex hormone-binding globulin (SHBG), and TIMP metalloproteinase inhibitor 1 (TIMP1) were quantified in sera from a cohort of 69 patients with early-stage HGSOC, late-stage HGSOC, benign ovarian conditions, and healthy (non-cancer) controls. Confirming the results from previously published studies using orthogonal analytical approaches, IBP2 was identified as a diagnostic biomarker candidate based on its significantly increased abundance in the late-stage HGSOC patient sera compared to the healthy controls and patients with benign ovarian conditions.ConclusionsA multiplexed targeted PRM MS assay was applied to detect candidate diagnostic biomarkers in HGSOC sera. To evaluate the clinical utility of the IBP2 PRM assay for HGSOC detection, further studies need to be performed using a larger patient cohort.
Project description:Metabolomics, the systematic investigation of all metabolites present within a biologic system, is used in biomarker development for many human diseases, including cancer. In this review, we investigate the current role of mass spectrometry-based metabolomics in cancer research. A literature review was carried out within the databases PubMed, Embase, and Web of Knowledge. We included 106 studies reporting on 21 different types of cancer in 7 different sample types. Metabolomics in cancer research is most often used for case-control comparisons. Secondary applications include translational areas, such as patient prognosis, therapy control and tumor classification, or grading. Metabolomics is at a developmental stage with respect to epidemiology, with the majority of studies including less than 100 patients. Standardization is required especially concerning sample preparation and data analysis. In the second part of this review, we reconstructed a metabolic network of patients with cancer by quantitatively extracting all reports of altered metabolites: Alterations in energy metabolism, membrane, and fatty acid synthesis emerged, with tryptophan levels changed most frequently in various cancers. Metabolomics has the potential to evolve into a standard tool for future applications in epidemiology and translational cancer research, but further, large-scale studies including prospective validation are needed.
Project description:Protein biomarkers for epithelial ovarian cancer are critical for the early detection of the cancer to improve patient prognosis and for the clinical management of the disease to monitor treatment response and to detect recurrences. Unfortunately, the discovery of protein biomarkers is hampered by the limited availability of reliable and sensitive assays needed for the reproducible quantification of proteins in complex biological matrices such as blood plasma. In recent years, targeted mass spectrometry, exemplified by selected reaction monitoring (SRM) has emerged as a method, capable of overcoming this limitation. Here, we present a comprehensive SRM-based strategy for developing plasma-based protein biomarkers for epithelial ovarian cancer and illustrate how the SRM platform, when combined with rigorous experimental design and statistical analysis, can result in detection of predictive analytes.Our biomarker development strategy first involved a discovery-driven proteomic effort to derive potential N-glycoprotein biomarker candidates for plasma-based detection of human ovarian cancer from a genetically engineered mouse model of endometrioid ovarian cancer, which accurately recapitulates the human disease. Next, 65 candidate markers selected from proteins of different abundance in the discovery dataset were reproducibly quantified with SRM assays across a large cohort of over 200 plasma samples from ovarian cancer patients and healthy controls. Finally, these measurements were used to derive a 5-protein signature for distinguishing individuals with epithelial ovarian cancer from healthy controls. The sensitivity of the candidate biomarker signature in combination with CA125 ELISA-based measurements currently used in clinic, exceeded that of CA125 ELISA-based measurements alone. The SRM-based strategy in this study is broadly applicable. It can be used in any study that requires accurate and reproducible quantification of selected proteins in a high-throughput and multiplexed fashion.
Project description:Alzheimer's disease (AD) is the leading cause of dementia in the aging population, but despite extensive research, there is no consensus on the biological cause of AD. While AD research is dominated by protein/peptide-centric research based on the amyloid hypothesis, a theory that designates dysfunction in beta-amyloid production, accumulation, or disposal as the primary cause of AD, many studies focus on metabolomics as a means of understanding the biological processes behind AD progression. In this review, we discuss mass spectrometry (MS)-based AD metabolomics studies, including sample type and preparation, mass spectrometry specifications, and data analysis, as well as biological insights gleaned from these studies, with the hope of informing future AD metabolomic studies.
Project description:While coffee beans have been studied for many years, researchers are showing a growing interest in coffee leaves and by-products, but little information is currently available on coffee species other than Coffea arabica and Coffea canephora. The aim of this work was to perform a targeted and untargeted metabolomics study on Coffea arabica, Coffea canephora and Coffea anthonyi. The application of the recent high-resolution mass spectrometry-based metabolomics tools allowed us to gain a clear overview of the main differences among the coffee species. The results showed that the leaves and fruits of Coffea anthonyi had a different metabolite profile when compared to the two other species. In Coffea anthonyi, caffeine levels were found in lower concentrations while caffeoylquinic acid and mangiferin-related compounds were found in higher concentrations. A large number of specialized metabolites can be found in Coffea anthonyi tissues, making this species a valid candidate for innovative healthcare products made with coffee extracts.
Project description:In mass spectrometry, reliable quantification requires correction for variations in ionization efficiency between samples. The preferred method is the addition of a stable isotope-labeled internal standard (SIL-IS). In targeted metabolomics, a dedicated SIL-IS for each metabolite of interest may not always be realized due to high cost or limited availability. We recently completed the analysis of more than 70 biomarkers, each with a matching SIL-IS, across four mass spectrometry-based platforms (one GC-MS/MS and three LC-MS/MS). Using data from calibrator and quality control samples added to 60 96-well trays (analytical runs), we calculated analytical precision (CV) retrospectively. The use of integrated peak areas for all metabolites and internal standards allowed us to calculate precision for all matching analyte (A)/SIL-IS (IS) pairs as well as for all nonmatching A/IS pairs within each platform (total n = 1442). The median between-run precision for matching A/IS across the four platforms was 2.7-5.9%. The median CV for nonmatching A/IS (corresponding to pairing analytes with a non-SIL-IS) was 2.9-10.7 percentage points higher. Across all platforms, CVs for nonmatching A/IS increased with increasing difference in retention time (Spearman's rho of 0.17-0.93). The CV difference for nonmatching vs matching A/IS was often, but not always, smaller when analytes and internal standards were close structural analogs.