Untargeted MS-based metabolomics analysis of the responses to drought stress in Quercus ilex leaf seedlings, and identification of putative compounds related to tolerance
Project description:Tardigrades are microscopic aquatic animals renowned for their tolerance toward extreme environmental conditions. The current study is the first to investigate their tolerance toward heavy metals and we present a novel tardigrade toxicant tolerance assay based on activity assessments as a measure of survival. Specifically, we compare tolerance toward copper in four species representing different evolutionary lineages, habitats and adaptation strategies, i.e., a marine heterotardigrade, Echiniscoides sigismundi, a limno-terrestrial heterotardigrade, Echiniscus testudo, a limno-terrestrial eutardigrade, Ramazzottius oberhaeuseri, and a marine eutardigrade, Halobiotus crispae. The latter was sampled at a time of year, when the population is predominantly represented by aberrant P1 cysts, while the other species were in normal active states prior to exposure. Based on volume measurements and a general relation between body mass and copper tolerance, expected tardigrade EC50 values were estimated at 0.5-2 μg l-1. Following 24 h of exposure, tolerance was high with no apparent link to lineage or habitat. EC50s (95% CI), 24 h after exposure, were estimated at 178 (168-186) and 310 (295-328) μg l-1, respectively, for E. sigismundi and R. oberhaeuseri, whereas E. testudo and H. crispae were less affected. Highest tolerance was observed in H. crispae with a mean ± s.e.m. activity of 77 ± 2% (n = 3) 24 h after removal from ~3 mg l-1 copper, suggesting that tardigrade cysts have increased tolerance toward toxicants. In order to identify putative tolerance related genes, an E. sigismundi transcriptome was searched for key enzymes involved in osmoregulation, antioxidant defense and copper metabolism. We found high expression of Na/K ATPase and carbonic anhydrase, known targets for copper. Our transcriptome, furthermore, revealed high expression of antioxidant enzymes, copper transporters, ATOX1, and a Cu-ATPase. In summary, our results indicate that tardigrades express well-known key osmoregulatory enzymes, supporting the hypothesis that copper inhibits sodium turnover as demonstrated for other aquatic organisms. Tardigrades, nevertheless, have high tolerance toward the toxicant, which is likely linked to high expression of antioxidant enzymes and an ability to enter dormant states. Tardigrades, furthermore, seem to have a well-developed battery of cuproproteins involved in copper homeostasis, providing basis for active copper sequestering and excretion.
Project description:The diagnosis of Lyme neuroborreliosis (LNB) requires the demonstration of intrathecal synthesis of Borrelia antibodies in a patient's cerebrospinal fluid (CSF), which involves the invasive procedure of a lumbar puncture. This study serves as a feasibility study aimed at exploring the potential of using serum samples, which are easily obtainable routine clinical samples, for LNB diagnostics via advanced metabolomics techniques. Serum samples were collected from confirmed LNB patients before and after treatment, with post-treatment samples serving as controls. The objective of the study was to find stable biomarkers for acute LNB through untargeted metabolomics analysis using ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). The study focused on biomarkers that could be reliably detected in serum samples stored under typical clinical conditions, without the need for special handling, ensuring consistent detection over time. The analysis revealed 26,978 molecular features (MFs), of which 1,746 were statistically significant (p < 0.001). Further manual investigation into 91 of the most prominent MFs revealed 53 potential biomarkers for LNB, individually or in combination. The workflow developed provides a comprehensive platform for biomarker detection, with potential applications in both research and clinical settings for LNB and other infections. This minimally invasive diagnostic approach is promising, and additional validation and future studies are needed for it to be considered as a practical alternative or a complement to CSF-based diagnostics of LNB in everyday clinical practice.
Project description:Free radical-induced oxidative stress is the root cause of many diseases, such as diabetes, stress and cardiovascular diseases. The objective of this research was to screen GABA levels, antioxidant activities and bioactive compounds in brown rice. In this study, we first fermented brown rice with different lactic acid bacteria (LABs), and the best LAB was selected based on the levels of GABA in the fermentate. Lactobacillus reuterii generated the highest levels of GABA after fermentation. To ascertain whether germination can improve the GABA levels of brown rice, we compared the levels of GABA in raw brown rice (Raw), germinated brown rice (Germ), fermented brown rice (Ferm) and fermented-germinated brown rice (G+F) to identify the best approach. Then, antioxidant activities were investigated for Raw BR, Germ BR, Ferm BR and G+F BR. Antioxidant activity was calculated using a 2,2-diphenyl-1-picryl hydrazile radical assay, 2,2-azino-bis-(3-ethylene benzothiozoline-6-sulfonic acid) radical assay and ferric-reducing antioxidant power. In Ferm BR, DPPH (114.40 ± 0.66), ABTS (130.52 ± 0.97) and FRAP (111.16 ± 1.83) mg Trolox equivalent 100 g, dry weight (DW), were observed as the highest among all samples. Total phenolic content (97.13 ± 0.59) and total flavonoids contents (79.62 ± 1.33) mg GAE/100 g and catechin equivalent/100 g, DW, were also found to be highest in fermented BR. Furthermore, an untargeted metabolomics approach using ultra-high-performance liquid tandem chromatography quadrupole time of flight mass spectrometry revealed the abundance of bioactive compounds in fermented BR, such as GABA, tryptophan, coumaric acid, L-ascorbic acid, linoleic acid, β-carotenol, eugenol, 6-gingerol, etc., as well as bioactive peptides which could contribute to the health-promoting properties of L. reuterii fermented brown rice.
Project description:Drought stress can directly inhibit seedling establishment in canola (Brassica napus), resulting in lower plant densities and reduced yields. To dissect this complex trait, 140 B. napus accessions were phenotyped under normal (0.0 MPa, S0) and water-stressed conditions simulated by polyethylene glycol (PEG) 6000 (-0.5 MPa, S5) in a hydroponic system. Phenotypic variation and heritability indicated that the root to shoot length ratio was a reliable indicator for water stress tolerance. Thereafter, 66 accessions (16 water stress tolerant, 34 moderate and 16 sensitive lines) were genotyped using 25,495 Brassica single nucleotide polymorphisms (SNPs). Genome-wide association studies (GWAS) identified 16 loci significantly associated with water stress response. Two B. napus accessions were used for RNA sequencing, with differentially-expressed genes under normal and water-stressed conditions examined. By combining differentially-expressed genes detected by RNA sequencing with significantly associated loci from GWAS, 79 candidate genes were identified, of which eight were putatively associated with drought tolerance based on gene ontology of Arabidopsis. Functional validation of these genes may confirm key drought-related genes for selection and breeding in B. napus. Our results provide insight into the genetic basis of water stress tolerance in canola.
Project description:Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection leads to a wide range of clinical manifestations and determines the need for personalized and precision medicine. To better understand the biological determinants of this heterogeneity, we explored the plasma proteome of 43 COVID-19 patients with different outcomes by an untargeted liquid chromatography-mass spectrometry approach. The comparison between asymptomatic or pauci-symptomatic subjects (MILDs), and hospitalised patients in need of oxygen support therapy (SEVEREs) highlighted 29 proteins emerged as differentially expressed: 12 overexpressed in MILDs and 17 in SEVEREs. Moreover, a supervised analysis based on a decision-tree recognised three proteins (Fetuin-A, Ig lambda-2chain-C-region, Vitronectin) that are able to robustly discriminate between the two classes independently from the infection stage. In silico functional annotation of the 29 deregulated proteins pinpointed several functions possibly related to the severity; no pathway was associated exclusively to MILDs, while several only to SEVEREs, and some associated to both MILDs and SEVEREs; SARS-CoV-2 signalling pathway was significantly enriched by proteins up-expressed in SEVEREs (SAA1/2, CRP, HP, LRG1) and in MILDs (GSN, HRG). In conclusion, our analysis could provide key information for 'proteomically' defining possible upstream mechanisms and mediators triggering or limiting the domino effect of the immune-related response and characterizing severe exacerbations.
Project description:Enzyme treatment and fermentation of cereals are known processes that enhance the release of bound bioactive compounds to make them available for bioactivity. In this study, we tested the angiotensin converting enzyme (ACE) inhibitory ability of destarched rice, Prozyme 2000p treated destarched rice (DP), and fermented DP samples. Prozyme 2000p treatment increased the ACE inhibitory ability from 15 ± 5% to 45 ± 3%. Fermentation of the Prozyme 2000p treated samples with Enterococcus faecium EBD1 significantly increased the ACE inhibitory ability to 75 ± 5%, while captopril showed an ACE inhibition of 92 ± 4%. An untargeted metabolomics approach using Ultra-high-performance liquid tandem chromatography quadrupole time of flight mass spectrometry revealed the abundance of vitamins, phenolic compounds, antioxidant peptides, DPP IV inhibitory peptides, and antihypertensive peptides in the fermented samples which may account for its strong ACE inhibition. Although fermented DP had decreased fatty acid levels, the amount of essential amino acid improved drastically compared to destarched rice. Our results show that fermenting Prozyme-treated destarched rice with Enterococcus faecium EBD1 generates abundant bioactive compounds necessary for developing antihypertensive functional foods.
Project description:The brown film (BF) of Lentinula edodes mycelium has been reported to exert biological activities during mushroom cultivation; however, to date, there is limited information on its chemical composition. In this study, untargeted metabolomics analysis was performed via liquid chromatography-mass spectrometry (LC-MS), and the results were used to screen the antimicrobial compounds. A total of 236 differential metabolites were found among the BF stages compared with the white hyphal stage. Among them, five important antimicrobial metabolites related to antimicrobial activities, namely, 6-deoxyerythronolide B, tanikolide, hydroxyanthraquinone, benzylideneacetone, and 9-OxooTrE, were present at high levels in the BF samples. The score plots of the principal component analysis indicated that the samples from four time points could be classified into two groups. This study provided a comprehensive profile of the antimicrobial compounds produced during BF formation and partly clarified the antibacterial and antifungal mechanism of the BF of L. edodes mycelium.
Project description:Certain strains of cyanobacteria produce a wide array of cyanotoxins, such as microcystins, lyngbyatoxins and aplysiatoxins, that are associated with public health issues. In this pilot study, an approach combining LC-MS/MS and molecular networking was employed as a rapid analytical method to detect aplysiatoxins present in four environmental marine cyanobacterial samples collected from intertidal areas in Singapore. Based on 16S-ITS rRNA gene sequences, these filamentous cyanobacterial samples collected from Pulau Hantu were determined as Trichodesmium erythraeum, Oscillatoria sp. PAB-2 and Okeania sp. PNG05-4. Organic extracts were prepared and analyzed on LC-HRMS/MS and Global Natural Product Social Molecular Networking (GNPS) for the presence of aplysiatoxin-related molecules. From the molecular networking, six known compounds, debromoaplysiatoxin (1), anhydrodebromoaplysiatoxin (2), 3-methoxydebromoaplysiatoxin (3), aplysiatoxin (4), oscillatoxin A (5) and 31-noroscillatoxin B (6), as well as potential new analogues, were detected in these samples. In addition, differences and similarities in molecular networking clusters related to the aplysiatoxin molecular family were observed in extracts of Trichodesmium erythraeum collected from two different locations and from different cyanobacterial species found at Pulau Hantu, respectively.
Project description:Metabolomics is a useful tool for comparing metabolite changes in plants. Because of its high sensitivity, metabolomics combined with high-resolution mass spectrometry (HR-MS) is the most widely accepted metabolomics tools. In this study, we compared the metabolites of pathogen-infected rice (Oryza sativa) with control rice using an untargeted metabolomics approach. We profiled the mass features of two rice groups using a liquid chromatography quadrupole time-of-flight mass spectrometry (QTOF-MS) system. Twelve of the most differentially induced metabolites in infected rice were selected through multivariate data analysis and identified through a mass spectral database search. The role of these compounds in metabolic pathways was finally investigated using pathway analysis. Our study showed that the most frequently induced secondary metabolites are prostanoids, a subclass of eicosanoids, which are associated with plant defense metabolism against pathogen infection. Herein, we propose a new untargeted metabolomics approach for understanding plant defense system at the metabolic level.
Project description:Salvia miltiorrhiza, a medicinal and edible plant, has been extensively applied to treat cardiovascular diseases and chronic hepatitis. Cadmium (Cd) affects the quality of S. miltiorrhiza, posing serious threats to human health. To reveal the metabolic mechanisms of S. miltiorrhiza's resistance to Cd stress, metabolite changes in S. miltiorrhiza roots treated with 0 (CK), 25 (T1), 50 (T2) and 100 (T3) mg kg-1 Cd by liquid chromatography coupled to mass spectrometry (LC-MS/MS) were investigated. A total of 305 metabolites were identified, and most of them were amino acids, organic acids and fatty acids, which contributed to the discrimination of CK from the Cd-treated groups. Among them, S. miltiorrhiza mainly upregulated o-tyrosine, chorismate and eudesmic acid in resistance to 25 mg kg-1 Cd; DL-tryptophan, L-aspartic acid, L-proline and chorismite in resistance to 50 mg kg-1 Cd; and L-proline, L-serine, L-histidine, eudesmic acid, and rosmarinic acid in resistance to 100 mg kg-1 Cd. It mainly downregulated unsaturated fatty acids (e.g., oleic acid, linoleic acid) in resistance to 25, 50, and 100 mg kg-1 Cd and upregulated saturated fatty acids (especially stearic acid) in resistance to 100 mg kg-1 Cd. Biosynthesis of unsaturated fatty acids, isoquinoline alkaloid, betalain, aminoacyl-tRNA, and tyrosine metabolism were the significantly enriched metabolic pathways and the most important pathways involved in the Cd resistance of S. miltiorrhiza. These data elucidated the crucial metabolic mechanisms involved in S. miltiorrhiza Cd resistance and the crucial metabolites that could be used to improve resistance to Cd stress in medicinal plant breeding.