Project description:Changes in cellular metabolism contribute to the development and progression of tumors, and can render tumors vulnerable to interventions. However, studies of human cancer metabolism remain limited due to technical challenges of detecting and quantifying small molecules, the highly interconnected nature of metabolic pathways, and the lack of designated tools to analyze and integrate metabolomics with other âomics data. Our study generates the largest comprehensive metabolomics dataset on a single cancer type, and provides a significant advance in integration of metabolomics with sequencing data. Our results highlight the massive re-organization of cellular metabolism as tumors progress and acquire more aggressive features. The results of our work are made available through an interactive public data portal for cancer research community. 10 RNA samples from human ccRCC tumors analyzed from the high glutathione cluster
Project description:Hepatic stellate cells (HSCs) play a vital role in liver fibrosis, and a greater understanding of their regulation is required. Recent studies have focused on relationships between extracellular matrix (ECM) stiffness and gene expression or cellular metabolism, but none have provided a detailed metabolic analysis of HSC changes in spheroid cultures. Accordingly, in the present study, we created an HSC spheroid culture and analyzed changes in gene expression and metabolism. Expression of α-smooth muscle actin (α-SMA) decreased in the spheroids, suppressing proliferation. Gene expression analysis revealed the cell cycle, sirtuin signaling, mitochondrial dysfunction, and the Hippo pathway to be canonical pathways, believed to result from decreased proliferative ability or mitochondrial suppression. In the Hippo pathway, nuclear translocation of the yes-associated protein (YAP) was decreased in the spheroid, which was associated with the stiffness of the ECM. Metabolome analysis showed glucose metabolism changes in the spheroid, including glutathione pathway upregulation and increased lipid synthesis. Addition of the glycolytic product phosphoenolpyruvate (PEP) led to increased spheroid size, with increased expression of proteins such as α-SMA and S6 ribosomal protein (RPS6) phosphorylation, which was attributed to decreased suppression of translation. The results of our study contribute to the understanding of metabolic changes in HSCs and the progression of hepatic fibrosis.
Project description:Vascular effects of estradiol are being investigated because there are controversies among clinical and experimental studies. DNA microarrays were used to investigate global gene expression patterns in cultured human umbilical vein endothelial cells (HUVEC) exposed to 1 nmol/L estradiol for 24 hours. When compared to control, 187 genes were identified as differentially expressed with 1.9-fold change threshold. Supervised principal component analysis and hierarchical cluster analysis revealed the differences between control and estradiol-treated samples. Physiological concentrations of estradiol are sufficient to elicit significant changes in HUVEC gene expression. Notch signaling, actin cytoskeleton signaling, pentose phosphate pathway, axonal guidance signaling and integrin signaling were the top-five canonical pathways significantly regulated by estrogen. A total of 26 regulatory networks were identified as estrogen responsive. Microarray data were confirmed by quantitative RT-PCR in cardiovascular meaning genes; cyclooxygenase (COX)1, dimethylarginine dimethylaminohydrolase (DDAH)2, phospholipase A2 group IV (PLA2G4) B, and 7-dehydrocholesterol reductase were up-regulated by estradiol in a dose-dependent and estrogen receptor-dependent way, whereas COX2, DDAH1 and PLA2G4A remained unaltered. Moreover, estradiol-induced COX1 gene expression resulted in increased COX1 protein content and enhanced prostacyclin production. DDAH2 protein content was also increased, which in turn decreased asymmetric dimethylarginine concentration and increased NO release. All stimulated effects of estradiol on gene and protein expression were estrogen receptor-dependent, since were abolished in the presence of the estrogen receptor antagonist ICI 182780. This study identifies new vascular mechanisms of action by which estradiol may contribute to a wide range of biological processes.
Project description:Tetracycline-inducible gene expression systems have been used successfully to study gene function in vivo and in vitro renal epithelial models but the effects of the common inducing agent, doxycycline (DOX), on gene expression are not well appreciated. Here, we evaluated the DOX effects on the transcriptome of a widely used renal epithelial cell model, mIMCD3 cells, to establish a reference. Cells were grown on permeable filter supports in the absence and presence of DOX (3 or 6 days), and genome-wide transcriptome profiles were assessed using RNA-Seq. We found DOX significantly altered the transcriptome profile, changing the abundance of 1,549 transcripts at 3 days and 2,643 transcripts at 6 days. Within 3 days of treatment, DOX significantly decreased the expression of multiple signaling pathways (ERK, cAMP, and Notch) that are associated with cell proliferation and differentiation. Genes associated with cell cycle progression were subsequently downregulated in cells treated with DOX for 6 days, as were genes involved in cellular immune response processes and several cytokines and chemokines, correlating with a remarkable repression of genes encoding cell proliferation markers. The results provide new insight into responses of renal epithelial cells to DOX and a establish a resource for DOX-mediated gene expression systems.
Project description:BackgroundThere has been a notable increase in interest in the transcriptional regulator Kaiso, which has been linked to the regulation of clonal hematopoiesis, myelodysplastic syndrome, and tumorigenesis. Nevertheless, there are no consistent data on the binding sites of Kaiso in vivo in the genome. Previous ChIP-seq analyses for Kaiso contradicted the accumulated data of Kaiso binding sites obtained in vitro. Here, we studied this discrepancy by characterizing the distribution profile of Kaiso binding sites in Caki-1 cells using Kaiso-deficient cells as a negative control, and compared its pattern on chromatin with that in lymphoblastoid cell lines.ResultsWe employed Caki-1 kidney carcinoma cells and their derivative, which lacks the Kaiso gene, as a model system to identify the genomic targets of Kaiso. The principal binding motifs for Kaiso are CGCG and CTGCNAT, with 60% of all binding sites containing both sequences. The significance of methyl-DNA binding activity was confirmed through examination of the genomic distribution of the E535A mutant variant of Kaiso, which cannot bind methylated DNA in vitro but is able to interact with CTGCNA sequences. Our findings indicate that Kaiso is present at CpG islands with a preference for methylated ones. We identified Kaiso target genes whose methylation and transcription are dependent on its expression. Furthermore, Kaiso binding sites are enriched at CpG islands, with partial methylation at the 5' and/or 3' boundaries. We discovered CpG islands exhibiting wave-like methylation patterns, with Kaiso detected in the majority of these areas. Similar data were obtained in other cell lines.ConclusionThe present study delineates the genomic distribution of Kaiso in cancer cells, confirming its role as a factor with a complex mode of DNA binding and a strong association with CpG islands, particularly with methylated and eroded CpG islands, revealing a new potential Kaiso target gene-SQSTM1, involved in differentiation of acute myeloid leukemia cells. Furthermore, we discovered the existence of a new class of CpG islands characterized by wave-like DNA methylation.
Project description:Chronic kidney disease (CKD) has a worldwide prevalence of higher than 10% with an increasing mortality rate. As it involves the deterioration of renal function, it represents a serious risk to human health and, if left untreated, significantly lowers the quality of the patient's life. CKD is characterized by renal fibrosis. Studies have shown that transforming growth factor β1 (TGF-β1), a key driving factor of renal fibrosis, is closely related to the activation of renal fibrosis pathways such as endoplasmic reticulum stress (ERS). Tauroursodeoxycholic acid (TUDCA), an endogenous bile acid derivative, can effectively inhibit endogenous ERS. Here, we explored the effects and actions of TUDCA on renal fibrosis by establishing a renal mesangial cell (RMC) model. The RMC was stimulated with TGF-β1, and PCR and western blotting were used to detect the expression of ERS-related chaperone proteins and fibrotic indicators. The expression of glucose-regulated protein 78 (GRP78) was silenced in RMC cells to investigate the role of GRP78 in renal fibrosis. Finally, PCR and western blotting were used to detect the effects of TUDCA on the expression of GRP78, C/EBP homologous protein (CHOP), α-smooth muscle actin (α-SMA), and fibronectin (FN) in the TGF-β1-stimulated RMCs. The results showed that TUDCA significantly downregulated TGF-β1-induced levels of GRP78, CHOP, α-SMA and FN in RMCs. In addition, downregulation of GRP78 inhibited the expression of FN and α-SMA in the RMCs. In conclusion, downregulation of GRP78 and CHOP expression is one of the mechanisms by which TUDCA inhibits TGF-β1-induced renal mesangial cell fibrosis.
Project description:Robust quantification is an essential component of comparative -omic strategies. In this regard, glycomics lags behind proteomics. Although various isotope-tagging and direct quantification methods have recently enhanced comparative glycan analysis, a cell culture labeling strategy, that could provide for glycomics the advantages that SILAC provides for proteomics, has not been described. Here, we report the development of IDAWG, Isotopic Detection of Aminosugars With Glutamine, for the incorporation of differential mass tags into the glycans of cultured cells. In this method, culture media containing amide-(15)N-Gln is used to metabolically label cellular aminosugars with heavy nitrogen. Because the amide side chain of Gln is the sole source of nitrogen for the biosynthesis of GlcNAc, GalNAc, and sialic acid, we demonstrate that culturing mouse embryonic stems cells for 72 h in the presence of amide-(15)N-Gln media results in nearly complete incorporation of (15)N into N-linked and O-linked glycans. The isotopically heavy monosaccharide residues provide additional information for interpreting glycan fragmentation and also allow quantification in both full MS and MS/MS modes. Thus, IDAWG is a simple to implement, yet powerful quantitative tool for the glycomics toolbox.
Project description:Cultured brain cells are used conventionally to investigate fundamental neurobiology and identify therapeutic targets against neural diseases. However, standard culture conditions do not simulate the natural cell microenvironment, thus hampering in vivo translational insight. Major weaknesses include atmospheric (21%) O2 tension and lack of intercellular communication, the two factors likely impacting metabolism and signaling. Here, we addressed this issue in mouse neurons and astrocytes in primary culture. We found that the signs of cellular and mitochondrial integrity were optimal when these cells were acclimated to grow in coculture, to emulate intercellular coupling, under physiologic (5%) O2 tension. Transcriptomic scrutiny, performed to elucidate the adaptive mechanism involved, revealed that the vast majority of differentially expressed transcripts were downregulated in both astrocytes and neurons. Gene ontology evaluation unveiled that the largest group of altered transcripts was glycolysis, which was experimentally validated by metabolic flux analyses. This protocol and database resource for neural cells grown under in vivo-like microenvironment may move forward the translation of basic into applied neurobiological research.
Project description:Stem cell‑based therapy is a promising alternative to conventional approaches to treating intervertebral disc degeneration (IDD). However, comprehensive understanding of stem cell‑based therapy at the gene level is still lacking. In the present study, we identified the expression profiles of messenger RNAs (mRNAs) and long non‑coding RNAs (lncRNAs) expressed within a co‑culture system of adipose‑derived mesenchymal stem cells (ASCs) and degenerative nucleus pulposus cells (NPCs) and explored the signaling pathways involved and their regulatory networks. Microarray analysis was used to compare ASCs co‑cultured with degenerative NPCs to ASCs cultured alone, and the underlying regulatory pattern, including the signaling pathways and competing endogenous RNA (ceRNA) network, was analyzed with robust bioinformatics methods. The results showed that 360 lncRNAs and 1757 mRNAs were differentially expressed by ASCs, and the microarray results were confirmed by quantitative PCR. Moreover, 589 Gene Ontology terms were upregulated, whereas 661 terms were downregulated. A total of 299 signaling pathways were significantly altered. A Path‑net and a Signal‑net were built to show interactions among differentially expressed genes. An mRNA‑lncRNA co‑expression network was constructed to reveal the interplay among differentially expressed mRNAs and lncRNAs, whereas a ceRNA network was built to investigate their connections with microRNAs involved in IDD. To the best of our knowledge, this original and comprehensive exploration reveals differentially expressed lncRNAs and mRNAs of ASCs stimulated by degenerative NPCs, underscoring the regulation pattern within the co‑culture system at the gene level. These data may further understanding of NPC‑directed differentiation of ASCs and facilitate the application of ASCs in future treatments for IDD.
Project description:Complex multicellular life in mammals relies on functional cooperation of different organs for the survival of the whole organism. The kidneys play a critical part in this process through the maintenance of fluid volume and composition homeostasis, which enables other organs to fulfil their tasks. The renal endothelium exhibits phenotypic and molecular traits that distinguish it from endothelia of other organs. Moreover, the adult kidney vasculature comprises diverse populations of mostly quiescent, but not metabolically inactive, endothelial cells (ECs) that reside within the kidney glomeruli, cortex and medulla. Each of these populations supports specific functions, for example, in the filtration of blood plasma, the reabsorption and secretion of water and solutes, and the concentration of urine. Transcriptional profiling of these diverse EC populations suggests they have adapted to local microenvironmental conditions (hypoxia, shear stress, hyperosmolarity), enabling them to support kidney functions. Exposure of ECs to microenvironment-derived angiogenic factors affects their metabolism, and sustains kidney development and homeostasis, whereas EC-derived angiocrine factors preserve distinct microenvironment niches. In the context of kidney disease, renal ECs show alteration in their metabolism and phenotype in response to pathological changes in the local microenvironment, further promoting kidney dysfunction. Understanding the diversity and specialization of kidney ECs could provide new avenues for the treatment of kidney diseases and kidney regeneration.