Project description:Recently, numerous studies have reported on different predictive models of disease severity in COVID-19 patients. Herein, we propose a highly predictive model of disease severity by integrating routine laboratory findings and plasma metabolites including cytosine as a potential biomarker of COVID-19 disease severity. One model was developed and internally validated on the basis of ROC-AUC values. The predictive accuracy of the model was 0.996 (95% CI: 0.989 to 1.000) with an optimal cut-off risk score of 3 from among 6 biomarkers including five lab findings (D-dimer, ferritin, neutrophil counts, Hp, and sTfR) and one metabolite (cytosine). The model is of high predictive power, needs a small number of variables that can be acquired at minimal cost and effort, and can be applied independent of non-empirical clinical data. The metabolomics profiling data and the modeling work stemming from it, as presented here, could further explain the cause of COVID-19 disease prognosis and patient management.
Project description:SARS-CoV-2 infection remains a major public health concern, particularly for the aged and those individuals with co-morbidities at risk for developing severe COVID-19. Understanding the pathogenesis and biomarkers associated with responses to SARS-CoV-2 infection remain critical components in developing effective therapeutic approaches, especially in cases of severe and long-COVID-19. In this study blood plasma protein expression was compared in subjects with mild, moderate, and severe COVID-19 disease. Evaluation of an inflammatory protein panel confirms upregulation of proteins including TNFβ, IL-6, IL-8, IL-12, already associated with severe cytokine storm and progression to severe COVID-19. Importantly, we identify several proteins not yet associated with COVID-19 disease, including mesothelin (MSLN), that are expressed at significantly higher levels in severe COVID-19 subjects. In addition, we find a subset of markers associated with T-cell and dendritic cell responses to viral infection that are significantly higher in mild cases and decrease in expression as severity of COVID-19 increases, suggesting that an immediate and effective activation of T-cells is critical in modulating disease progression. Together, our findings identify new targets for further investigation as therapeutic approaches for the treatment of SARS-CoV-2 infection and prevention of complications of severe COVID-19.
Project description:COVID-19 is characterized by a wide spectrum of disease severity, whose indicators and underlying mechanisms need to be identified. The role of extracellular vesicles (EVs) in COVID-19 and their biomarker potential, however, remains largely unknown. Aiming to identify specific EV signatures of patients with mild compared to severe COVID-19, we characterized the EV composition of 20 mild and 26 severe COVID-19 patients along with 16 sex and age-matched healthy donors with a panel of eight different antibodies by imaging flow cytometry (IFCM). We correlated the obtained data with 37 clinical, prerecorded biochemical and immunological parameters. Severe patients' sera contained increased amounts of CD13+ and CD82+ EVs, which positively correlated with IL-6-producing and circulating myeloid-derived suppressor cells (MDSCs) and with the serum concentration of proinflammatory cytokines, respectively. Sera of mild COVID-19 patients contained more HLA-ABC+ EVs than sera of the healthy donors and more CD24+ EVs than severe COVID-19 patients. Their increased abundance negatively correlated with disease severity and accumulation of MDSCs, being considered as key drivers of immunopathogenesis in COVID-19. Altogether, our results support the potential of serum EVs as powerful biomarkers for COVID-19 severity and pave the way for future investigations aiming to unravel the role of EVs in COVID-19 progression.
Project description:SARS-CoV-2 has caused over 100,000,000 cases and almost 2,500,000 deaths globally. Comprehensive assessment of the multifaceted antiviral Ab response is critical for diagnosis, differentiation of severity, and characterization of long-term immunity, especially as COVID-19 vaccines become available. Severe disease is associated with early, massive plasmablast responses. We developed a multiplex immunoassay from serum/plasma of acutely infected and convalescent COVID-19 patients and prepandemic and postpandemic healthy adults. We measured IgA, IgG, and/or IgM against SARS-CoV-2 nucleocapsid (N), spike domain 1 (S1), S1-receptor binding domain (RBD) and S1-N-terminal domain. For diagnosis, the combined [IgA + IgG + IgM] or IgG levels measured for N, S1, and S1-RBD yielded area under the curve values ≥0.90. Virus-specific Ig levels were higher in patients with severe/critical compared with mild/moderate infections. A strong prozone effect was observed in sera from severe/critical patients-a possible source of underestimated Ab concentrations in previous studies. Mild/moderate patients displayed a slower rise and lower peak in anti-N and anti-S1 IgG levels compared with severe/critical patients, but anti-RBD IgG and neutralization responses reached similar levels at 2-4 mo after symptom onset. Measurement of the Ab responses in sera from 18 COVID-19-vaccinated patients revealed specific responses for the S1-RBD Ag and none against the N protein. This highly sensitive, SARS-CoV-2-specific, multiplex immunoassay measures the magnitude, complexity, and kinetics of the Ab response and can distinguish serum Ab responses from natural SARS-CoV-2 infections (mild or severe) and mRNA COVID-19 vaccines.
Project description:The causative organism, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits a wide spectrum of clinical manifestations in disease-ridden patients. Differences in the severity of COVID-19 ranges from asymptomatic infections and mild cases to the severe form, leading to acute respiratory distress syndrome (ARDS) and multiorgan failure with poor survival. MiRNAs can regulate various cellular processes, including proliferation, apoptosis, and differentiation, by binding to the 3′UTR of target mRNAs inducing their degradation, thus serving a fundamental role in post-transcriptional repression. Alterations of miRNA levels in the blood have been described in multiple inflammatory and infectious diseases, including SARS-related coronaviruses. We used microarrays to delineate the miRNAs and snoRNAs signature in the peripheral blood of severe COVID-19 cases (n=9), as compared to mild (n=10) and asymptomatic (n=10) patients, and identified differentially expressed transcripts in severe versus asymptomatic, and others in severe versus mild COVID-19 cases. A cohort of 29 male age-matched patients were selected. All patients were previously diagnosed with COVID-19 using TaqPath COVID-19 Combo Kit (Thermo Fisher Scientific, Waltham, Massachusetts), or Cobas SARS-CoV-2 Test (Roche Diagnostics, Rotkreuz, Switzerland), with a CT value < 30. Additional criterion for selection was age between 35 and 75 years. Participants were grouped into severe, mild and asymptomatic. Classifying severe cases was based on requirement of high-flow oxygen support and ICU admission (n=9). Whereas mild patients were identified based on symptoms and positive radiographic findings with pulmonary involvement (n=10). Patients with no clinical presentation were labelled as asymptomatic cases (n=10).
Project description:Since the outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China, it has rapidly spread across many other countries. While the majority of patients were considered mild, critically ill patients involving respiratory failure and multiple organ dysfunction syndrome are not uncommon, which could result death. We hypothesized that cytokine storm is associated with severe outcome. We enrolled 102 COVID-19 patients who were admitted to Renmin Hospital (Wuhan, China). All patients were classified into moderate, severe and critical groups according to their symptoms. 45 control samples of healthy volunteers were also included. Inflammatory cytokines and C-Reactive Protein (CRP) profiles of serum samples were analyzed by specific immunoassays. Results showed that COVID-19 patients have higher serum level of cytokines (TNF-α, IFN-γ, IL-2, IL-4, IL-6 and IL-10) and CRP than control individuals. Within COVID-19 patients, serum IL-6 and IL-10 levels are significantly higher in critical group (n = 17) than in moderate (n = 42) and severe (n = 43) group. The levels of IL-10 is positively correlated with CRP amount (r = 0.41, P < 0.01). Using univariate logistic regression analysis, IL-6 and IL-10 are found to be predictive of disease severity and receiver operating curve analysis could further confirm this result (AUC = 0.841, 0.822 respectively). Our result indicated higher levels of cytokine storm is associated with more severe disease development. Among them, IL-6 and IL-10 can be used as predictors for fast diagnosis of patients with higher risk of disease deterioration. Given the high levels of cytokines induced by SARS-CoV-2, treatment to reduce inflammation-related lung damage is critical.
Project description:The oral mucosa is the first site of SARS-CoV-2 entry and replication, and it plays a central role in the early defense against infection. Thus, SARS-CoV-2 viral load, miRNAs, cytokines, and neutralizing activity (NA) were assessed in saliva and plasma from mild (MD) and severe (SD) COVID-19 patients. Here we show that of the 84 miRNAs analysed, 8 are differently express in plasma and saliva of SD. In particular: 1) miRNAs let-7a-5p, let-7b-5p, let-7c-5p are significantly downregulated; and 2) miR-23a and b, miR-29c, as well as three immunomodulatory miRNAs (miR-34a-5p, miR-181d-5p, miR-146) are significantly upregulated. The production of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, IL-9 and TNFα) and chemokines (CCL2 and RANTES) increase in both saliva and plasma of SD and MD. Notably, disease severity correlates with NA and immune activation. Monitoring these parameters could help to predict disease outcome and identify new markers of disease progression.
Project description:The oral mucosa is the first site of SARS-CoV-2 entry and replication, and it plays a central role in the early defense against infection. Thus, SARS-CoV-2 viral load, miRNAs, cytokines, and neutralizing activity (NA) were assessed in saliva and plasma from mild (MD) and severe (SD) COVID-19 patients. Here we show that of the 84 miRNAs analysed, 8 are differently express in plasma and saliva of SD. In particular: 1) miRNAs let-7a-5p, let-7b-5p, let-7c-5p are significantly downregulated; and 2) miR-23a and b, miR-29c, as well as three immunomodulatory miRNAs (miR-34a-5p, miR-181d-5p, miR-146) are significantly upregulated. The production of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, IL-9 and TNFα) and chemokines (CCL2 and RANTES) increase in both saliva and plasma of SD and MD. Notably, disease severity correlates with NA and immune activation. Monitoring these parameters could help to predict disease outcome and identify new markers of disease progression.
Project description:In this study, we sought to identify circulating microRNA (miRNA) signatures associated with COVID-19 severity and outcome through small RNA-sequencing of serum samples from 89 COVID-19 patients and 45 healthy controls. As results, a set of miRNAs associated with lung disease, vascular damage and inflammation were upregulated in serum of COVID-19 patients vs controls, while miRNAs that inhibit pro-inflammatory cytokines and chemokines, angiogenesis and stress response were downregulated. In addition, patients with severe COVID-19 vs mild or moderate disease had a circulating miRNA signature associated with sepsis, hearth failure, tissue fibrosis, inflammation, and impairment of type I IFN and antiviral responses. A subset of the differentially expressed miRNAs predicted ICU admission, sequelae and mortality in COVID-19 patients. Investigation of the differentially expressed circulating miRNAs in relevant human cell types in vitro showed that some of these miRNAs were modulated directly by SARS-CoV-2 infection or indirectly by type I IFN stimulation.