Project description:Sepsis is an uncontrolled, systemic response to infection with life-threatening consequences. Our understanding of the pathogenesis of sepsis across organs of the body is rudimentary. Here, using mouse models of sepsis, we generate a dynamic, organism-wide map of the pathogenesis of the disease, revealing the spatiotemporal patterns of well-known and previously unrecognized effects of sepsis on the body. By combining functional perturbations with organism-wide profiling, we discover two interorgan mechanisms that are key to the pathophysiology of sepsis. First, we find that a hierarchical cytokine circuit arising from the pairwise effects of TNF plus IL-18, IFN-γ, or IL-1β suffices to explain a large fraction of the molecular effects of sepsis on the body. Moreover, the effects of these three cytokine pairs on the abundance of nearly two hundred cell types across nine organ types recapitulate half of all the cellular effects of sepsis. Second, we uncover an interorgan pathway whereby a gut-derived, secreted phospholipase, Pla2g5, mediates hemolysis in the blood circulation and contributes to multi-organ failure during sepsis. Thus, a simplifying principle in the systemic behavior of the cytokine network and a lipase misdirected from gut to blood provide fundamental insights to help build a unifying mechanistic framework for the pathophysiological effects of sepsis on the organ systems of the body.
Project description:IntroductionThe recent discovery of TAK981(Subasumstat), the first-in-class selective inhibitor of SUMOylation, enables new immune treatments. TAK981 is already in clinical trials to potentiate immunotherapy in metastatic tumors and hematologic malignancies. Cancer patients have more than ten times higher risk of infections, but the effects of TAK981 in sepsis are unknown and previous studies on SUMO in infections are conflicting.MethodsWe used TAK981 in two sepsis models; polymicrobial peritonitis (CLP) and LPS endotoxemia. Splenectomy was done in both models to study the role of spleen. Western blotting of SUMO-conjugated proteins in spleen lysates was done. Global SUMO1 and SUMO3 knockout mice were used to study the specific SUMO regulation of inflammation in LPS endotoxemia. Splenocytes adoptive transfer was done from SUMO knockouts to wild type mice to study the role of spleen SUMOylation in experimental sepsis.Results and discussionHere, we report that inhibition of SUMOylation with TAK981 improved survival in mild polymicrobial peritonitis by enhancing innate immune responses and peritoneal bacterial clearance. Thus, we focused on the effects of TAK981 on the immune responses to bacterial endotoxin, showing that TAK981 enhanced early TNFα production but did not affect the resolution of inflammation. Splenectomy decreased serum TNFα levels by nearly 60% and TAK981-induced TNFα responses. In the spleen, endotoxemia induced a distinct temporal and substrate specificity for SUMO1 and SUMO2/3, and both were inhibited by TAK981. Global genetic depletion of SUMO1, but not SUMO3, enhanced TNFα production and metabolic acidosis. The transfer of SUMO1-null, but not wild-type, splenocytes into splenectomized wild-type mice exacerbated TNFα production and metabolic acidosis in endotoxemia.ConclusionThese results suggest that specific regulation of splenic SUMO1 can modulate immune and metabolic responses to bacterial infection.
Project description:Dimorphic fungal pathogens cause a significant human disease burden and unlike most fungal pathogens affect immunocompetent hosts. To examine the origin of virulence of these fungal pathogens, we compared genomes of classic systemic, opportunistic, and non-pathogenic species, including Emmonsia and two basal branching, non-pathogenic species in the Ajellomycetaceae, Helicocarpus griseus and Polytolypa hystricis. We found that gene families related to plant degradation, secondary metabolites synthesis, and amino acid and lipid metabolism are retained in H. griseus and P. hystricis. While genes involved in the virulence of dimorphic pathogenic fungi are conserved in saprophytes, changes in the copy number of proteases, kinases and transcription factors in systemic dimorphic relative to non-dimorphic species may have aided the evolution of specialized gene regulatory programs to rapidly adapt to higher temperatures and new nutritional environments. Notably, both of the basal branching, non-pathogenic species appear homothallic, with both mating type locus idiomorphs fused at a single locus, whereas all related pathogenic species are heterothallic. These differences revealed that independent changes in nutrient acquisition capacity have occurred in the Onygenaceae and Ajellomycetaceae, and underlie how the dimorphic pathogens have adapted to the human host and decreased their capacity for growth in environmental niches.
Project description:The pituitary represents an essential hub in the hypothalamus-pituitary-adrenal (HPA) axis. Pituitary hormone-producing cells (HPCs) release several hormones to regulate fundamental bodily functions under normal and stressful conditions. It is well established that the pituitary endocrine gland modulates the immune system by releasing adrenocorticotropic hormone (ACTH) in response to neuronal activation in the hypothalamus. However, it remains unclear how systemic inflammation regulates the transcriptomic profiles of pituitary HPCs. Here, we performed single-cell RNA-sequencing (scRNA-seq) of the mouse pituitary and revealed that upon inflammation, all major pituitary HPCs respond robustly in a cell type-specific manner, with corticotropes displaying the strongest reaction. Systemic inflammation also led to the production and release of noncanonical bioactive molecules, including Nptx2 by corticotropes, to modulate immune homeostasis. Meanwhile, HPCs up-regulated the gene expression of chemokines that facilitated the communication between the HPCs and immune cells. Together, our study reveals extensive interactions between the pituitary and immune system, suggesting multifaceted roles of the pituitary in mediating the effects of inflammation on many aspects of body physiology.
Project description:ObjectivesWe tested the hypothesis that a C-reactive protein and ferritin-based systemic inflammation contingency table can track mortality risk in pediatric severe sepsis.DesignProspective cohort study.SettingTertiary PICU.PatientsChildren with 100 separate admission episodes of severe sepsis were enrolled.InterventionsBlood samples were attained on day 2 of sepsis and bi-weekly for biomarker batch analysis. A 2 × 2 contingency table using C-reactive protein and ferritin thresholds was developed.Measurements and main resultsA C-reactive protein of 4.08 mg/dL and a ferritin of 1,980 ng/mL were found to be optimal cutoffs for outcome prediction at first sampling (n = 100) using the Youden index. PICU mortality was increased in the "high-risk" C-reactive protein greater than or equal to 4.08 mg/dL and ferritin greater than or equal to 1,980 ng/mL category (6/13 [46.15%]) compared with the "intermediate-risk" C-reactive protein greater than or equal to 4.08 mg/dL and ferritin less than 1,980 ng/mL or C-reactive protein less than 4.08 mg/dL and ferritin greater than or equal to 1,980 ng/mL categories (2/43 [4.65%]), and the "low-risk" C-reactive protein less than 4.08 mg/dL and ferritin less than 1,980 ng/mL category (0/44 [0%]) (odds ratio, 36.43 [95% CI, 6.16-215.21]). The high-risk category was also associated with the development of immunoparalysis (odds ratio, 4.47 [95% CI, 1.34-14.96]) and macrophage activation syndrome (odds ratio, 24.20 [95% CI, 5.50-106.54]). Sixty-three children underwent sequential blood sampling; those who were initially in the low-risk category (n = 24) and those who subsequently migrated (n = 19) to the low-risk category all survived, whereas those who remained in the "at-risk" categories had increased mortality (7/20 [35%]; p < 0.05).ConclusionsA C-reactive protein- and ferritin-based contingency table effectively assessed mortality risk. Reduction in systemic inflammation below a combined threshold C-reactive protein of 4.08 mg/dL and ferritin of 1,980 ng/mL appeared to be a desired response in children with severe sepsis.
Project description:Sepsis is an infection-induced systemic inflammatory response syndrome. Upstream recognition molecules, like CD14, play key roles in the pathogenesis. The aim of the present study was to investigate the effect of systemic CD14 inhibition on local inflammatory responses in organs from septic pigs. Pigs (n = 34) receiving Escherichia coli-bacteria or E. coli-lipopolysaccharide (LPS) were treated with an anti-CD14 monoclonal antibody or an isotype-matched control. Lungs, liver, spleen, and kidneys were examined for bacteria and inflammatory biomarkers. E. coli and LPS were found in large amounts in the lungs compared to the liver, spleen, and kidneys. Notably, the bacterial load did not predict the respective organ inflammatory response. There was a marked variation in biomarker induction in the organs and in the effect of anti-CD14. Generally, the spleen produced the most cytokines per weight unit, whereas the liver contributed the most to the total load. All cytokines were significantly inhibited in the spleen. Interleukin-6 (IL-6) was significantly inhibited in all organs, IL-1? and IP-10 were significantly inhibited in liver, spleen, and kidneys, and tumor necrosis factor, IL-8, and PAI-1 were inhibited only in the spleen. ICAM-1 and VCAM-1 was significantly inhibited in the kidneys. Systemic CD14-inhibition efficiently, though organ dependent, attenuated local inflammatory responses. Detailed knowledge on how the different organs respond to systemic inflammation in vivo, beyond the information gained by blood examination, is important for our understanding of the nature of systemic inflammation and is required for future mediator-directed therapy in sepsis. Inhibition of CD14 seems to be a good candidate for such treatment.
Project description:Sepsis causes millions of deaths per year worldwide and is a current global health priority declared by the WHO. Sepsis-related deaths are a result of dysregulated inflammatory immune responses indicating the need to develop strategies to target inflammation. An important mediator of inflammation is extracellular adenosine triphosphate (ATP) that is released by inflamed host cells and tissues, and also by bacteria in a strain-specific and growth-dependent manner. Here, we investigated the mechanisms by which bacteria release ATP. Using genetic mutant strains of Escherichia coli (E. coli), we demonstrate that ATP release is dependent on ATP synthase within the inner bacterial membrane. In addition, impaired integrity of the outer bacterial membrane notably contributes to ATP release and is associated with bacterial death. In a mouse model of abdominal sepsis, local effects of bacterial ATP were analyzed using a transformed E. coli bearing an arabinose-inducible periplasmic apyrase hydrolyzing ATP to be released. Abrogating bacterial ATP release shows that bacterial ATP suppresses local immune responses, resulting in reduced neutrophil counts and impaired survival. In addition, bacterial ATP has systemic effects via its transport in outer membrane vesicles (OMV). ATP-loaded OMV are quickly distributed throughout the body and upregulated expression of genes activating degranulation in neutrophils, potentially contributing to the exacerbation of sepsis severity. This study reveals mechanisms of bacterial ATP release and its local and systemic roles in sepsis pathogenesis.
Project description:ObjectivesSepsis is one of the leading causes of morbidity and mortality within the healthcare system and remains a diagnostic and therapeutic challenge. A major issue in the diagnosis of sepsis is understanding the pathophysiologic mechanism, which revolves around host immune system activation and dysregulated responses. African Americans are more likely to experience severe sepsis with higher mortality rates compared to the general population. This pilot study characterized multiple inflammatory markers and proteases in plasma of primarily African American and Afro-Caribbean patients with mild sepsis.MethodsPlasma was collected from 16 healthy controls and 15 subjects presenting with sepsis, on admission, and again upon resolution of the signs of sepsis, defined as a resolution of sepsis criteria. Plasma samples were analyzed for cytokines, chemokines, and proteases using multiplex bead assays.ResultsElevated levels of granulocyte colony-stimulating factor, interleukin-10, interleukin-15, interleukin-1 receptor antagonist, interleukin-8, interferon gamma-induced protein 10, monocyte chemoattractant protein-1, matrix metallopeptidase 12, and cathepsin S were identified in plasma from sepsis patients on admission compared to control subjects. Interleukin-6, interleukin-8, granulocyte colony-stimulating factor, and cathepsin S were reduced in sepsis patients upon clinical resolution of sepsis.ConclusionThese findings profile the circulating inflammatory cytokines, chemokines, and proteases in African Americans and Afro-Caribbean patients during sepsis. The role of these targets in sepsis needs addressing in this patient population.
Project description:Sepsis causes millions of deaths per year worldwide and is a current global health priority declared by the WHO. Sepsis-related deaths are a result of dysregulated inflammatory immune responses indicating the need to develop strategies to target inflammation. An important mediator of inflammation is extracellular adenosine triphosphate (ATP) that is secreted by inflamed host cells and tissues, and also by bacteria in a strain-specific and growth phase-dependent manner. Here, we investigated the mechanisms by which bacteria release ATP. Using genetic mutant strains of Escherichia coli (E. coli), we demonstrate that ATP release is dependent on ATP synthase within the inner bacterial membrane. In addition, impaired integrity of the outer bacterial membrane and bacterial death notably contribute to ATP release. In a mouse model of abdominal sepsis, local effects of bacterial ATP were analysed using a transformed E. coli bearing an arabinose-inducible periplasmic apyrase hydrolyzing ATP to be released. Abrogating bacterial ATP release shows that bacterial ATP suppresses local immune responses, resulting in reduced neutrophil counts and impaired survival. In addition, bacterial ATP has systemic effects via its transport in outer membrane vesicles (OMV). ATP-loaded OMV are quickly distributed throughout the body and upregulated expression of genes activating degranulation in neutrophils, potentially contributing to the exacerbation of sepsis severity. This study reveals mechanisms of bacterial ATP release and its local and systemic roles in sepsis pathogenesis.