Project description:Single-cell RNA-sequencing (scRNAseq) is revolutionizing biomedicine, propelled by advances in methodology, ease of use, and cost reduction of library preparation. Over the past decade, there have been remarkable technical improvements in most aspects of single-cell transcriptomics. Yet, there has been little to no progress in advancing RNase inhibition despite that maintained RNA integrity is critical during cell collection, storage, and cDNA library generation. Here, we demonstrate that a synthetic thermostable RNase inhibitor yield single-cell libraries of equal or superior quality compared to ubiquitously used protein-based recombinant RNase inhibitors (RRIs). Importantly, the synthetic RNase inhibitor provide additional unique improvements in reproducibility and throughput, enable new experimental workflows including heat cycles, and can reduce the need for dry-ice transports. In summary, replacing RRIs represents a substantial advancement in the field of single-cell transcriptomics.