Project description:Genome assembly and comparative genomic analyses of the soybean pathogens Cercospora cf. flagellaris, C. kikuchii and C. cf. sigesbeckiae.
Project description:Plant diseases caused by the Cercospora genus of ascomycete fungi are a major concern for commercial agricultural practices. Several Cercospora species can affect soybeans, such as Cercospora kikuchii which causes soybean leaf blight. Speciation in Cercospora on soybean has not been adequately studied. Some cryptic groups of Cercospora also cause diseases on soybean. Moreover, it has been known C. kikuchii population genetic structure is different between countries. Consequently, further genomic information could help to elucidate the covert differentiation of Cercospora diseases in soybean. Here, we report for the first time, a chromosome-level genome assembly for C. kikuchii. The genome assembly of 9 contigs was 34.44 Mb and the N50 was 4.19 Mb. Based on ab initio gene prediction, several candidates for pathogenicity-related genes, including 242 genes for putative effectors, 55 secondary metabolite gene clusters, and 399 carbohydrate-active enzyme genes were identified. The genome sequence and the features described in this study provide a solid foundation for comparative and evolutionary genomic analysis for Cercospora species that cause soybean diseases worldwide.
Project description:Cercospora armoraciae causes leaf spot disease on Armoracia rusticana. Exudation of droplets, when grown on PDA, distinguishes this fungi from other members of the genus Cercospora. The role this exudate plays in the virulence of this pathogen has not been elucidated. To explore this, we characterized the proteome of exudate associated with this plant pathogen. Nano-HPLC-MS/MS analysis was used to identify proteins in the pathogen exudate. A total of 576 proteins comprising 1,538 peptides, 1,524 unique peptide, were identified from the exudate.
Project description:Gray leaf spot (GLS) disease of maize can be caused by either of two sibling fungal species Cercospora zeina or Cercospora zeae-maydis. These species differ in geographical distribution, for example to date only C. zeina is associated with GLS in Africa. C. zeae-maydis isolates produce the phytotoxin cercosporin in vitro, whereas C. zeina does not. C.zeina was grown in different in vitro conditions to determine if the cercosporin biosynthesis genes were expressed. Furthermore, the choice of a range of different in vitro conditions was aimed at capturing transcript sequences from a broad range of genes to aid in identification of gene models for annotation of the C.zeina genome sequence.