Project description:The cephalopod genus Nautilus is considered a "living fossil" with a contested number of extant and extinct species, and a benthic lifestyle that limits movement of animals between isolated seamounts and landmasses in the Indo-Pacific. Nautiluses are fished for their shells, most heavily in the Philippines, and these fisheries have little monitoring or regulation. Here, we evaluate the hypothesis that multiple species of Nautilus (e.g., N. belauensis, N. repertus and N. stenomphalus) are in fact one species with a diverse phenotypic and geologic range. Using mitochondrial markers, we show that nautiluses from the Philippines, eastern Australia (Great Barrier Reef), Vanuatu, American Samoa, and Fiji fall into distinct geographical clades. For phylogenetic analysis of species complexes across the range of nautilus, we included sequences of Nautilus pompilius and other Nautilus species from GenBank from localities sampled in this study and others. We found that specimens from Western Australia cluster with samples from the Philippines, suggesting that interbreeding may be occurring between those locations, or that there is limited genetic drift due to large effective population sizes. Intriguingly, our data also show that nautilus identified in other studies as N. belauensis, N. stenomphalus, or N. repertus are likely N. pompilius displaying a diversity of morphological characters, suggesting that there is significant phenotypic plasticity within N. pompilius.
Project description:The low fecundity, late maturity, long gestation and long life span of Nautilus suggest that this species is vulnerable to over-exploitation. Demand from the ornamental shell trade has contributed to their rapid decline in localized populations. More data from wild populations are needed to design management plans which ensure Nautilus persistence. We used a variety of techniques including capture-mark-recapture, baited remote underwater video systems, ultrasonic telemetry and remotely operated vehicles to estimate population size, growth rates, distribution and demographic characteristics of an unexploited Nautilus pompilius population at Osprey Reef (Coral Sea, Australia). We estimated a small and dispersed population of between 844 and 4467 individuals (14.6-77.4 km(-2)) dominated by males (83:17 male:female) and comprised of few juveniles (<10%).These results provide the first Nautilid population and density estimates which are essential elements for long-term management of populations via sustainable catch models. Results from baited remote underwater video systems provide confidence for their more widespread use to assess efficiently the size and density of exploited and unexploited Nautilus populations worldwide.
Project description:Vertical depth migrations into shallower waters at night by the chambered cephalopod Nautilus were first hypothesized early in the early 20(th) Century. Subsequent studies have supported the hypothesis that Nautilus spend daytime hours at depth and only ascend to around 200 m at night. Here we challenge this idea of a universal Nautilus behavior. Ultrasonic telemetry techniques were employed to track eleven specimens of Nautilus pompilius for variable times ranging from one to 78 days at Osprey Reef, Coral Sea, Australia. To supplement these observations, six remotely operated vehicle (ROV) dives were conducted at the same location to provide 29 hours of observations from 100 to 800 meter depths which sighted an additional 48 individuals, including five juveniles, all deeper than 489 m. The resulting data suggest virtually continuous, nightly movement between depths of 130 to 700 m, with daytime behavior split between either virtual stasis in the relatively shallow 160-225 m depths or active foraging in depths between 489 to 700 m. The findings also extend the known habitable depth range of Nautilus to 700 m, demonstrate juvenile distribution within the same habitat as adults and document daytime feeding behavior. These data support a hypothesis that, contrary to previously observed diurnal patterns of shallower at night than day, more complex vertical movement patterns may exist in at least this, and perhaps all other Nautilus populations. These are most likely dictated by optimal feeding substrate, avoidance of daytime visual predators, requirements for resting periods at 200 m to regain neutral buoyancy, upper temperature limits of around 25°C and implosion depths of 800 m. The slope, terrain and biological community of the various geographically separated Nautilus populations may provide different permutations and combinations of the above factors resulting in preferred vertical movement strategies most suited for each population.
Project description:Nautilus is the sole surviving externally shelled cephalopod from the Palaeozoic. It is unique within cephalopod genealogy and critical to understanding the evolutionary novelties of cephalopods. Here, we present a complete Nautilus pompilius genome as a fundamental genomic reference on cephalopod innovations, such as the pinhole eye and biomineralization. Nautilus shows a compact, minimalist genome with few encoding genes and slow evolutionary rates in both non-coding and coding regions among known cephalopods. Importantly, multiple genomic innovations including gene losses, independent contraction and expansion of specific gene families and their associated regulatory networks likely moulded the evolution of the nautilus pinhole eye. The conserved molluscan biomineralization toolkit and lineage-specific repetitive low-complexity domains are essential to the construction of the nautilus shell. The nautilus genome constitutes a valuable resource for reconstructing the evolutionary scenarios and genomic innovations that shape the extant cephalopods.
Project description:Nautiloids are the subject of speculation as to their threatened status arising from the impacts of targeted fishing for the ornamental shell market. Life history knowledge is essential to understand the susceptibility of this group to overfishing and to the instigation of management frameworks. This study provides a comprehensive insight into the life of Nautilus in the wild. At Osprey Reef from 1998-2008, trapping for Nautilus was conducted on 354 occasions, with 2460 individuals of one species, Nautilus pompilius, captured and 247 individuals recaptured. Baited remote underwater video systems (BRUVS) were deployed on 15 occasions and six remotely operated vehicle (ROV) dives from 100-800 m were conducted to record Nautilus presence and behavior. Maturity, sex and size data were recorded, while measurements of recaptured individuals allowed estimation of growth rates to maturity, and longevity beyond maturity. We found sexual dimorphism in size at maturity (males: 131.9±SD?=?2.6 mm; females: 118.9±7.5 mm shell diameter) in a population dominated by mature individuals (58%). Mean growth rates of 15 immature recaptured animals were 0.061±0.023 mm day(-1) resulting in an estimate of around 15.5 years to maturation. Recaptures of mature animals after five years provide evidence of a lifespan exceeding 20 years. Juvenile Nautilus pompilius feeding behavior was recorded for the first time within the same depth range (200-610 m) as adults. Our results provide strong evidence of a K-selected life history for Nautilus from a detailed study of a 'closed' wild population. In conjunction with population size and density estimates established for the Osprey Reef Nautilus, this work allows calculations for sustainable catch and provides mechanisms to extrapolate these findings to other extant nautiloid populations (Nautilus and Allonautilus spp.) throughout the Indo-Pacific.
Project description:Despite being a member of the shelled mollusks (Conchiferans), most members of extant cephalopods have lost their external biomineralized shells, except for the basally diverging Nautilids. Here, we report the result of our study to identify major Shell Matrix Proteins and their domains in the Nautilid Nautilus pompilius, in order to gain a general insight into the evolution of Conchiferan Shell Matrix Proteins. In order to do so, we performed a multiomics study on the shell of N. pompilius, by conducting transcriptomics of its mantle tissue and proteomics of its shell matrix. Analyses of obtained data identified 61 distinct shell-specific sequences. Of the successfully annotated 27 sequences, protein domains were predicted in 19. Comparative analysis of Nautilus sequences with four Conchiferans for which Shell Matrix Protein data were available (the pacific oyster, the pearl oyster, the limpet and the Euhadra snail) revealed that three proteins and six protein domains were conserved in all Conchiferans. Interestingly, when the terrestrial Euhadra snail was excluded, another five proteins and six protein domains were found to be shared among the four marine Conchiferans. Phylogenetic analyses indicated that most of these proteins and domains were probably present in the ancestral Conchiferan, but employed in shell formation later and independently in most clades. Even though further studies utilizing deeper sequencing techniques to obtain genome and full-length sequences, and functional analyses, must be carried out in the future, our results here provide important pieces of information for the elucidation of the evolution of Conchiferan shells at the molecular level.