Project description:Although Japanese morning glory (Ipomoea nil (L.) Roth.) has been used intensively for genetic studies, DNA markers have not been developed in Ipomoea nil sufficient to cover all chromosomes. Therefore, we conducted microsatellite (simple sequence repeats, SSR) marker development in I. nil for future genetic studies. From 92,662 expressed sequence tag (EST) sequences, 514 unique microsatellite-containing ESTs were identified. Primer pairs were designed automatically in 326 SSRs. Of 150 SSRs examined, 75 showed polymorphisms among strains. A phenogram based on the SSR genotypes revealed the genetic relation among seven Japanese morning glories from five different regions of the world and an ivyleaf morning glory (I. hederacea Jacq.). The developed SSR markers might be applicable for genetic studies of morning glories and their relatives.
Project description:Ipomoea is the largest genus in the family Convolvulaceae. Ipomoea nil (Japanese morning glory) has been utilized as a model plant to study the genetic basis of floricultural traits, with over 1,500 mutant lines. In the present study, we have utilized second- and third-generation-sequencing platforms, and have reported a draft genome of I. nil with a scaffold N50 of 2.88?Mb (contig N50 of 1.87?Mb), covering 98% of the 750?Mb genome. Scaffolds covering 91.42% of the assembly are anchored to 15 pseudo-chromosomes. The draft genome has enabled the identification and cataloguing of the Tpn1 family transposons, known as the major mutagen of I. nil, and analysing the dwarf gene, CONTRACTED, located on the genetic map published in 1956. Comparative genomics has suggested that a whole genome duplication in Convolvulaceae, distinct from the recent Solanaceae event, has occurred after the divergence of the two sister families.
Project description:Japanese morning glory, Ipomoea nil, has several coloured flowers except yellow, because it can accumulate only trace amounts of carotenoids in the petal. To make the petal yellow with carotenoids, we introduced five carotenogenic genes (geranylgeranyl pyrophosphate synthase, phytoene synthase, lycopene β-cyclase and β-ring hydroxylase from Ipomoea obscura var. lutea and bacterial phytoene desaturase from Pantoea ananatis) to white-flowered I. nil cv. AK77 with a petal-specific promoter by Rhizobium (Agrobacterium)-mediated transformation method. We succeeded to produce transgenic plants overexpressing carotenogenic genes. In the petal of the transgenic plants, mRNA levels of the carotenogenic genes were 10 to 1,000 times higher than those of non-transgenic control. The petal colour did not change visually; however, carotenoid concentration in the petal was increased up to about ten-fold relative to non-transgenic control. Moreover, the components of carotenoids in the petal were diversified, in particular, several β-carotene derivatives, such as zeaxanthin and neoxanthin, were newly synthesized. This is the first report, to our knowledge, of changing the component and increasing the amount of carotenoid in petals that lack ability to biosynthesize carotenoids.
Project description:Many known miRNAs in fish come from zebrafish and fugu whose genome sequence data are available. The Japanese flounder undergoes typical metamorphosis which is characterized by major morphological, functional, and behavioral changes during growth due to this metamorphosis from larva to juvenile. Metamorphosis is a biological process by which an animal physically develops after birth or hatching, involving a conspicuous and relatively abrupt change in the animal's body structure through cell growth and differentiation. Here, the high-throughput sequencing was adopted to identify the miRNAs during metamorphosis in the Japanese flounder. We found abundant microRNAs during metamorphosis in the Japanese flounder.
Project description:CRISPR/Cas9 technology is a versatile tool for targeted mutagenesis in many organisms, including plants. However, this technique has not been applied to the Japanese morning glory (Ipomoea [Pharbitis] nil), a traditional garden plant chosen for the National BioResource Project in Japan. We selected dihydroflavonol-4-reductase-B (DFR-B) of I. nil, encoding an anthocyanin biosynthesis enzyme, as the target gene, and changes in the stem colour were observed during the early stages of plant tissue culture by Rhizobium [Agrobacterium]-mediated transformation. Twenty-four of the 32 (75%) transgenic plants bore anthocyanin-less white flowers with bi-allelic mutations at the Cas9 cleavage site in DFR-B, exhibiting a single base insertion or deletions of more than two bases. Thus, these results demonstrate that CRISPR/Cas9 technology enables the exploration of gene functions in this model horticultural plant. To our knowledge, this report is the first concerning flower colour changes in higher plants using CRISPR/Cas9 technology.
Project description:To determine what kind of genes are involved in vocal learning ability, we performed microarray experiments using 3 vocal learning species (zebra finch, budgerigar, Anna's hummingbird) and 2 non-vocal learning species(ring dive, and Japanese quail) from the bird group. All of the animals are male adults. They were isolated over night and had 1hour light exposure at morning. Birds who did not sing were used in this experiment.