Project description:volved enabling cells to evade toxicity and acquire tolerance. Herein, we explored how Saccharomyces cerevisiae (budding yeast) respond to trivalent arsenic (arsenite) by quantitative and kinetic transcriptome, proteome and sulfur metabolite profiling. Arsenite exposure affected transcription of genes encoding functions related to protein biosynthesis, arsenic detoxification, oxidative stress defense, redox maintenance and proteolytic activity. Importantly, enzymes involved in sulfate assimilation and glutathione biosynthesis were induced at both gene and protein levels. Kinetic metabolic profiling evidenced a significant increase in the pools of sulfur metabolites as well as elevated glutathione levels. Moreover, the flux in the sulfur assimilation pathway as well as the glutathione synthesis rate strongly increased with a concomitant reduction of sulfur incorporation into proteins. By combining comparative genomics and molecular analyses, we pin-pointed transcription factors that mediate thecore of the transcriptional response to arsenite. Taken together, our data reveals that arsenite-exposed cells channel a large part of assimilated sulfur into glutathione biosynthesis and we provide evidence that the transcriptional regulators Yap1p and Met4p control this response in concert. Keywords: stress
Project description:Arsenic is ubiquitously present in nature and various mechanisms have evolved enabling cells to evade toxicity and acquire tolerance. Herein, we explored how Saccharomyces cerevisiae (budding yeast) respond to trivalent arsenic (arsenite) by quantitative and kinetic transcriptome, proteome and sulfur metabolite profiling. Arsenite exposure affected transcription of genes encoding functions related to protein biosynthesis, arsenic detoxification, oxidative stress defense, redox maintenance and proteolytic activity. Importantly, enzymes involved in sulfate assimilation and glutathione biosynthesis were induced at both gene and protein levels. Kinetic metabolic profiling evidenced a significant increase in the pools of sulfur metabolites as well as elevated glutathione levels. Moreover, the flux in the sulfur assimilation pathway as well as the glutathione synthesis rate strongly increased with a concomitant reduction of sulfur incorporation into proteins. By combining comparative genomics and molecular analyses, we pin-pointed transcription factors that mediate thecore of the transcriptional response to arsenite. Taken together, our data reveals that arsenite-exposed cells channel a large part of assimilated sulfur into glutathione biosynthesis and we provide evidence that the transcriptional regulators Yap1p and Met4p control this response in concert. Keywords: stress
Project description:Arsenic is ubiquitously present in nature and various mechanisms have evolved enabling cells to evade toxicity and acquire tolerance. Herein, we explored how Saccharomyces cerevisiae (budding yeast) respond to trivalent arsenic (arsenite) by quantitative and kinetic transcriptome, proteome and sulfur metabolite profiling. Arsenite exposure affected transcription of genes encoding functions related to protein biosynthesis, arsenic detoxification, oxidative stress defense, redox maintenance and proteolytic activity. Importantly, enzymes involved in sulfate assimilation and glutathione biosynthesis were induced at both gene and protein levels. Kinetic metabolic profiling evidenced a significant increase in the pools of sulfur metabolites as well as elevated glutathione levels. Moreover, the flux in the sulfur assimilation pathway as well as the glutathione synthesis rate strongly increased with a concomitant reduction of sulfur incorporation into proteins. By combining comparative genomics and molecular analyses, we pin-pointed transcription factors that mediate thecore of the transcriptional response to arsenite. Taken together, our data reveals that arsenite-exposed cells channel a large part of assimilated sulfur into glutathione biosynthesis and we provide evidence that the transcriptional regulators Yap1p and Met4p control this response in concert. Keywords: stress
Project description:Arsenic is ubiquitously present in nature and various mechanisms have evolved enabling cells to evade toxicity and acquire tolerance. Herein, we explored how Saccharomyces cerevisiae (budding yeast) respond to trivalent arsenic (arsenite) by quantitative and kinetic transcriptome, proteome and sulfur metabolite profiling. Arsenite exposure affected transcription of genes encoding functions related to protein biosynthesis, arsenic detoxification, oxidative stress defense, redox maintenance and proteolytic activity. Importantly, enzymes involved in sulfate assimilation and glutathione biosynthesis were induced at both gene and protein levels. Kinetic metabolic profiling evidenced a significant increase in the pools of sulfur metabolites as well as elevated glutathione levels. Moreover, the flux in the sulfur assimilation pathway as well as the glutathione synthesis rate strongly increased with a concomitant reduction of sulfur incorporation into proteins. By combining comparative genomics and molecular analyses, we pin-pointed transcription factors that mediate thecore of the transcriptional response to arsenite. Taken together, our data reveals that arsenite-exposed cells channel a large part of assimilated sulfur into glutathione biosynthesis and we provide evidence that the transcriptional regulators Yap1p and Met4p control this response in concert. Keywords: stress
Project description:Arsenic is ubiquitously present in nature and various mechanisms have evolved enabling cells to evade toxicity and acquire tolerance. Herein, we explored how Saccharomyces cerevisiae (budding yeast) respond to trivalent arsenic (arsenite) by quantitative and kinetic transcriptome, proteome and sulfur metabolite profiling. Arsenite exposure affected transcription of genes encoding functions related to protein biosynthesis, arsenic detoxification, oxidative stress defense, redox maintenance and proteolytic activity. Importantly, enzymes involved in sulfate assimilation and glutathione biosynthesis were induced at both gene and protein levels. Kinetic metabolic profiling evidenced a significant increase in the pools of sulfur metabolites as well as elevated glutathione levels. Moreover, the flux in the sulfur assimilation pathway as well as the glutathione synthesis rate strongly increased with a concomitant reduction of sulfur incorporation into proteins. By combining comparative genomics and molecular analyses, we pin-pointed transcription factors that mediate thecore of the transcriptional response to arsenite. Taken together, our data reveals that arsenite-exposed cells channel a large part of assimilated sulfur into glutathione biosynthesis and we provide evidence that the transcriptional regulators Yap1p and Met4p control this response in concert. Keywords: stress
Project description:Arsenic is ubiquitously present in nature and various mechanisms have evolved enabling cells to evade toxicity and acquire tolerance. Herein, we explored how Saccharomyces cerevisiae (budding yeast) respond to trivalent arsenic (arsenite) by quantitative and kinetic transcriptome, proteome and sulfur metabolite profiling. Arsenite exposure affected transcription of genes encoding functions related to protein biosynthesis, arsenic detoxification, oxidative stress defense, redox maintenance and proteolytic activity. Importantly, enzymes involved in sulfate assimilation and glutathione biosynthesis were induced at both gene and protein levels. Kinetic metabolic profiling evidenced a significant increase in the pools of sulfur metabolites as well as elevated glutathione levels. Moreover, the flux in the sulfur assimilation pathway as well as the glutathione synthesis rate strongly increased with a concomitant reduction of sulfur incorporation into proteins. By combining comparative genomics and molecular analyses, we pin-pointed transcription factors that mediate thecore of the transcriptional response to arsenite. Taken together, our data reveals that arsenite-exposed cells channel a large part of assimilated sulfur into glutathione biosynthesis and we provide evidence that the transcriptional regulators Yap1p and Met4p control this response in concert. Keywords: stress, time course
Project description:Abstract: The crenarchaeal order Sulfolobales collectively contains at least five major terminal oxidase complexes. Based on genome sequence information, all five complexes are found only in Metallosphaera sedula and Sulfolobus tokodaii, the two sequenced Sulfolobales capable of iron oxidization. While specific respiratory complexes in certain Sulfolobales have been characterized previously as proton pumps for maintaining intracellular pH and generating proton motive force (pmf), their contribution to sulfur and iron biooxidation has not been considered. For M. sedula growing in the presence of ferrous iron and reduced inorganic sulfur compounds (RISCs), global transcriptional analysis was used to track the response of specific genes associated with these complexes, as well as other known and putative respiratory electron transport chain elements. ORFs from all five terminal oxidase or bc1-like complexes were stimulated on one or more conditions tested. Components of the fox (Msed0467-0489) and soxNL-cbsABA (Msed0500-0505) terminal/quinol oxidase clusters were triggered by ferrous iron, while the soxABCDD' terminal oxidase cluster (Msed0285-0291) were induced by tetrathionate and S°. Chemolithotrophic electron transport elements, including a putative tetrathionate hydrolase (Msed0804), a novel polysulfide/sulfur/DMSO reductase-like complex (Msed0812-0818), and a novel heterodisulfide reductase-like complex (Msed1542-1550), were also stimulated by RISCs. Furthermore, several hypothetical proteins were found to have strong responses to ferrous iron or RISCs, suggesting additional candidates in iron or sulfur oxidation-related pathways. From this analysis, a comprehensive model for electron transport in M. sedula could be proposed as the basis for examining specific details of iron and sulfur oxidation in this bioleaching archaeon.