Project description:The marine bacterium Rhodococcus erythropolis PR4 was demonstrated to be able for assimilation/biodegradation of hydrocarbons. Not just the chromosome but two large plasmids provide versatile enzyme sets involved in many metabolic pathways. In order to identify the key elements involved in biodegradation of the model compound, hexadecane, and diesel oil, we performed whole transcriptome analysis on cells grown in the presence of n-hexadecane and diesel oil. Sodium acetate grown cells were used as control. The final goal of the project is a comparative transcriptomic analysis of Rhodococcus erythropolis PR4 cells grown on acetate, on the model compound: hexadecane and the real substrate: diesel oil. Comparative transcriptomics of Rhodococcus erythropolis PR4 grown on n-hexadecane, diesel oil, and sodium acetate.
Project description:The marine bacterium Rhodococcus erythropolis PR4 was demonstrated to be able for assimilation/biodegradation of hydrocarbons. Not just the chromosome but two large plasmids provide versatile enzyme sets involved in many metabolic pathways. In order to identify the key elements involved in biodegradation of the model compound, hexadecane, and diesel oil, we performed whole transcriptome analysis on cells grown in the presence of n-hexadecane and diesel oil. Sodium acetate grown cells were used as control. The final goal of the project is a comparative transcriptomic analysis of Rhodococcus erythropolis PR4 cells grown on acetate, on the model compound: hexadecane and the real substrate: diesel oil.