Project description:This data originates from an expression quantitative trait locus analysis of cerebrum in an advanced intercross of Red Jungefowl and White Leghorn chickens. The aim of the study was to map the genetic basis of cerebrum and body mass, and idenifiy transcriptional differences within the intercross to assess any candidate genes for cerebrum and body mass.
Project description:Gene expression was measured in trisomy 21 and trisomy 13 human fetal samples. For TS21, regions assayed were cerebrum, cerebellum, heart, and cerebrum-derived astrocyte cell lines.
Project description:We describe a so far uncharacterized, embryonic and self-renewing Neural Plate Border Stem Cell (NBSC) population with the capacity to differentiate into central nervous and neural crest lineages. NBSCs can be obtained by neural transcription factor-mediated reprogramming (BRN2, SOX2, KLF4 and ZIC3) of human adult dermal fibroblasts and peripheral blood cells (induced Neural Plate Border Stem Cells, iNBSCs) or by directed differentiation from human induced pluripotent stem cells (NBSCs). Moreover, human (i)NBSCs share molecular and functional features with an endogenous NBSC population isolated from neural folds of E8.5 mouse embryos. Upon differentiation, iNBSCs give rise to either (1) radial glia-type stem cells, dopaminergic and serotonergic neurons, motoneurons, astrocytes, and oligodendrocytes or (2) cells from the neural crest lineage. Here we provide single cell RNA-sequencing data of six iNBSC lines (310 cells total). iNBSCs were single-cell-sorted and RNA sequencing was performed following the Smart-seq2 protocol. This dataset further supports the notion that iNBSC cultures mainly consist of stem cells with a molecular and functional neural plate border-like identity and a minor fraction of cells that show signs of some spontaneous differentiation towards sensory neurons.
Project description:Paclitaxel-induced peripheral neuropathy is a significant problem, which afflicts up to 70% of chemotherapy patients. Therapeutic interventions are currently unavailable due to an incomplete understanding of the underlying mechanisms. We previously discovered a major target in the skin, MMP-13, which underlies the development of paclitaxel-induced peripheral neuropathy in zebrafish and rodents. To better understand gene expression changes in sensory neurons and target tissue prior to and during the progression of neuropathy, we performed longitudinal RNA sequencing of mouse skin and dorsal root ganglion (DRG) neurons. Samples were harvested at time points associated with behavioural responses following injection of mice for 7 days either with vehicle or paclitaxel. The responses were categorized into pain onset (day 4 of paclitaxel injection), maxima (d7), beginning of pain resolution (d11) and recovery phase (d23). This dataset will be useful to understand changes in gene regulation in both neurons and skin, which can aid in the discovery of therapeutic interventions.
Project description:Oxaliplatin-induced neuropathy is a major dose-limiting side effect in patients with colorectal cancer treated with the FOLFOX chemotherapy regimen. Hypersensitivity to cold is the sensory hallmark of oxaliplatin-induced neuropathy, and it can predict the development of long-term neuropathy. In this study, the investigators aim to determine whether intravenous lidocaine can prevent oxaliplatin-induced cold hypersensitivity.
Project description:The purpose of this experiment was to further our understanding of gene expression in the central nervous system (thalamus and cerebrum) after exposure to West Nile virus. To that end, three different analyses were performed. The first examined differences in gene expression between horses not vaccinated and exposed to WNV and normal control horses (exposure). The second examined differences in gene expression between horses not vaccinated and exposed to WNV and horses vaccinated and exposed to WNV (survival). And the third examined differences between the nonvaccinated cerebrum and nonvaccinated thalamus of horses exposed to WNV (location). Six conditions- Gene expression in the thalamus and cerebrum of three different groups of horses (Non-vaccinated horses exposed to West Nile virus, Vaccinated horses exposed to West Nile virus, normal horses not exposed to West Nile virus). Biological replicates- 6 normal cerebrums, 6 normal thalamus, 6 vaccinated and exposed cerebrums, 6 vaccinated and exposed thalamus, 6 non-vaccinated and exposed cerebrum, 6 non-vaccinated and exposed thalamus.
Project description:The purpose of this experiment was to further our understanding of gene expression in the central nervous system (thalamus and cerebrum) after exposure to West Nile virus. To that end, three different analyses were performed. The first examined differences in gene expression between horses not vaccinated and exposed to WNV and normal control horses (exposure). The second examined differences in gene expression between horses not vaccinated and exposed to WNV and horses vaccinated and exposed to WNV (survival). And the third examined differences between the nonvaccinated cerebrum and nonvaccinated thalamus of horses exposed to WNV (location).