Project description:Malaria, due to Plasmodium ovale, can be challenging to diagnose due to clinically mild disease and low parasite burden. Two genetically distinct sub-species of P. ovale exist: Plasmodium ovale curtisi (classic) and Plasmodium ovale wallikeri (variant). It is presently unknown if the sub-species causing infection affects performance of malaria diagnostic tests. The aim of this work was to understand how the genetically distinct sub-species, P. o. curtisi and P. o. wallikeri, affect malaria diagnostic tests.Plasmodium ovale-positive whole blood specimens were sub-speciated by PCR and sequencing of 18S rRNA and dhfr-ts. Parasitaemia, morphology, pan-aldolase positivity, 18S copy number, and dhfr-ts sequences were compared between sub-species.From 2006 to 2015, 49 P. ovale isolates were identified, of which 22 were P. o. curtisi and 27 P. o. wallikeri; 80% were identified in the last five years, and 88% were acquired in West Africa. Sub-species did not differ by parasitaemia, 18S copy number, or pan-aldolase positivity. Lack of Schüffner's stippling was over-represented among P. o. wallikeri isolates (p = 0.02). Several nucleotide polymorphisms between the sub-species were observed, but they do not occur at sites believed to relate to antifolate binding.Plasmodium ovale is increasing among travellers to West Africa, although sub-species do not differ significantly by parasitologic features such as parasitaemia. Absence of Schüffner's stippling may be a feature specific to P. o. wallikeri and is a novel finding.
Project description:BackgroundIn Ethiopia Plasmodium falciparum and Plasmodium vivax are the dominant species accounting for roughly 60 and 40% of malaria cases, respectively. Recently a major shift from P. falciparum to P. vivax has been observed in various parts of the country but the epidemiology of the other human malaria species, Plasmodium ovale spp. and Plasmodium malariae remains poorly understood. The aim of this study was to assess P. ovale curtisi and wallikeri infection in north-west Ethiopia by using microscopy and nested PCR.MethodsA health institution-based survey using non-probability sampling techniques was conducted at Maksegnet, Enfranze and Kola Diba health centres and Metema hospital in North Gondar. Three-hundred patients with signs and symptoms consistent with malaria were included in this study and capillary blood was collected for microscopic examination and molecular analysis of Plasmodium species. Samples were collected on Whatman 903 filter papers, stored in small plastic bags with desiccant and transported to Vienna (Austria) for molecular analysis. Data from study participants were entered and analysed by SPSS 20 software.ResultsOut of 300 study participants (167 males and 133 females), 184 samples were classified positive for malaria (133 P. falciparum and 51 P. vivax) by microscopy. By species-specific PCR 233 Plasmodium spp (95% CI: 72.6-82) were detected and the majority 155 (66.5%, 95% CI: 60.2-72.3) were P. falciparum followed by P. vivax 69 (29.6%, 95% CI; 24.1-35.8) and 9 (3.9%, 95% CI: 2-7.2) samples were positive for P. ovale. Seven of P. ovale parasites were confirmed as P. ovale wallikeri and two were confirmed as P. ovale curtisi. None of the samples tested positive for P. malariae. During microscopic examination there were high (16.3%) false negative reports and all mixed infections and P. ovale cases were missed or misclassified.ConclusionThis study indicates that P. ovale malaria is under-reported in Ethiopia and provides the first known evidence of the sympatric distribution of indigenous P. ovale wallikeri and P. ovale curtisi in Ethiopia. Therefore, further studies assessing the prevalence of the rare species P. ovale and P. malariae are urgently needed to better understand the species distribution and to adapt malaria control strategies.
Project description:It has been proposed that ovale malaria in humans is caused by two closely related but distinct species of malaria parasite, Plasmodium ovale curtisi and Plasmodium ovale wallikeri. It was recently shown that these two parasite types are sympatric at the country level. However, it remains possible that localised geographic, temporal or ecological barriers exist within endemic countries which prevent recombination between the genomes of the two species. Here, using conventional and real-time quantitative PCR (qPCR) methods specifically designed to discriminate P. o. curtisi and P. o. wallikeri, it is shown that both species are present among clinic attendees in Congo-Brazzaville, and occur simultaneously both in lake-side and inland districts in Uganda and on Bioko Island, Equatorial Guinea. Thus P. o. curtisi and P. o. wallikeri in these localities are exactly sympatric in both time and space. These findings are consistent with the existence of a biological barrier, rather than geographical or ecological factors, preventing recombination between P. o. curtisi and P. o. wallikeri. In cross-sectional surveys carried out in Uganda and Bioko, our results show that infections with P. ovale spp. are more common than previously thought, occurring at a frequency of 1-6% in population samples, with both proposed species contributing to ovale malaria in six sites. Malaria elimination programmes in Africa need to include strategies for control of P. o. curtisi and P. o. wallikeri.
Project description:Plasmodium ovale curtisi and Plasmodium ovale wallikeri are two sympatric human malaria species prevalent in Africa, Asia and Oceania. The reported prevalence of both P. ovale spp. was relatively low compared to other malaria species, but more sensitive molecular detection techniques have shown that asymptomatic low-density infections are more common than previously thought. Whole genome sequencing of both P. ovale spp. revealed genetic dissociation between P. ovale curtisi and P. ovale wallikeri suggesting a species barrier. In this study we further evaluate such a barrier by assessing polymorphisms in the genes of three vaccine candidate surface protein: circumsporozoite protein/ thrombospondin-related anonymous-related protein (ctrp), circumsporozoite surface protein (csp) and merozoite surface protein 1 (msp1). The complete coding sequence of ctrp and csp, and a partial fragment of msp1 were isolated from 25 P. ovale isolates and compared to previously reported reference sequences. A low level of nucleotide diversity (Pi = 0.02-0.10) was observed in all three genes. Various sizes of tandem repeats were observed in all ctrp, csp and msp1 genes. Both tandem repeat unit and nucleotide polymorphism in all three genes exhibited clear dimorphism between P. ovale curtisi and P. ovale wallikeri, supporting evidence of non-recombination between these two species.
Project description:The purpose of this research is to identify and evaluate the global gene expression of the rodent malaria parasites Plasmodium yoelii, Plasmodium berghei and Plasmodium chabaudi blood-stage parasites and specifically compare the blood stage gene expression profiles of samples derived from previous studies on Plasmodium falciparum, Plasmodium vivax and Plasmodium knowlesi
Project description:Plasmodium ovale curtisi and Plasmodium ovale wallikeri are distinct species of malaria parasite which are sympatric throughout the tropics, except for the Americas. Despite this complete overlap in geographic range, these two species do not recombine. Although morphologically very similar, the two taxa must possess distinct characters which prevent recombination between them. We hypothesised that proteins required for sexual reproduction have sufficiently diverged between the two species to prevent recombination in any mosquito blood meal in which gametocytes of both species are ingested. In order to investigate possible barriers to inter-species mating between P. ovale curtisi and P. ovale wallikeri, homologues of genes encoding sexual stage proteins in other plasmodia were identified and compared between the two species. Database searches with motifs for 6-cysteine, Limulus Coagulation factor C domain-containing proteins and other relevant sexual stage proteins in the genus Plasmodium were performed in the available P. ovale curtisi partial genome database (Wellcome Trust Sanger Institute, UK). Sequence fragments obtained were used as the basis for PCR walking along each gene of interest in reference isolates of both P. ovale curtisi and P. ovale wallikeri. Sequence alignment of the homologues of each gene in each species showed complete dimorphism across all isolates. In conclusion, substantial divergence between sexual stage proteins in the two P. ovale spp. was observed, providing further evidence that these do not recombine in nature. Incompatibility of proteins involved in sexual development and fertilisation thus remains a plausible explanation for the observed lack of natural recombination between P. ovale curtisi and P. ovale wallikeri.