Project description:Pastick2009 - Genome-scale metabolic network
of Streptococcus thermophilus (iMP429)
This model is described in the article:
Genome-scale model of
Streptococcus thermophilus LMG18311 for metabolic comparison of
lactic acid bacteria.
Pastink MI, Teusink B, Hols P,
Visser S, de Vos WM, Hugenholtz J.
Appl. Environ. Microbiol. 2009 Jun;
75(11): 3627-3633
Abstract:
In this report, we describe the amino acid metabolism and
amino acid dependency of the dairy bacterium Streptococcus
thermophilus LMG18311 and compare them with those of two other
characterized lactic acid bacteria, Lactococcus lactis and
Lactobacillus plantarum. Through the construction of a
genome-scale metabolic model of S. thermophilus, the metabolic
differences between the three bacteria were visualized by
direct projection on a metabolic map. The comparative analysis
revealed the minimal amino acid auxotrophy (only histidine and
methionine or cysteine) of S. thermophilus LMG18311 and the
broad variety of volatiles produced from amino acids compared
to the other two bacteria. It also revealed the limited number
of pyruvate branches, forcing this strain to use the
homofermentative metabolism for growth optimization. In
addition, some industrially relevant features could be
identified in S. thermophilus, such as the unique pathway for
acetaldehyde (yogurt flavor) production and the absence of a
complete pentose phosphate pathway.
This model is hosted on
BioModels Database
and identified by:
MODEL1507180063.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Functional genomic analyses of exopolysaccharide-producing Streptococcus thermophilus ASCC 1275 in response to shifts in milk fermentation conditions
Project description:Streptococcus thermophilus ACA-DC 2 is a newly sequenced strain isolated from traditional Greek yogurt. Among the 14 fully sequenced strains of S. thermophilus currently deposited in the NCBI database, the ACA-DC 2 strain has the smallest chromosome, containing 1,731,838 bp. The annotation of its genome revealed the presence of 1,850 genes, including 1,556 protein-coding genes, 70 RNA genes and 224 potential pseudogenes. A large number of pseudogenes were identified. This was also accompanied by the absence of pathogenic features suggesting evolution of strain ACA-DC 2 through genome decay processes, most probably due to adaptation to the milk ecosystem. Analysis revealed the existence of one complete lactose-galactose operon, several proteolytic enzymes, one exopolysaccharide cluster, stress response genes and four putative antimicrobial peptides. Interestingly, one CRISPR-cas system and one orphan CRISPR, both carrying only one spacer, were predicted indicating low activity or inactivation of the cas proteins. Nevertheless, four putative restriction-modification systems were determined that may compensate any deficiencies of the CRISPR-cas system. Furthermore, whole genome phylogeny indicated three distinct clades within S. thermophilus. Comparative analysis among selected strains representative for each clade, including strain ACA-DC 2, revealed a high degree of conservation at the genomic scale, but also strain specific regions. Unique genes and genomic islands of strain ACA-DC 2 contained a number of genes potentially acquired through horizontal gene transfer events, that could be related to important technological properties for dairy starters. Our study suggests genomic traits in strain ACA-DC 2 compatible to the production of dairy fermented foods.