Project description:The aim of the project was to identify differently expressed genes in eggs of European seabass (Dicentrarchus labrax) characterized by different quality. In this way it was expected to identify genes possibly being a molecular indicator of egg quality in this species, which was never studied to date. For the study microarray analysis of over 26 thousand genes in 16 egg batches was performed. Additionally, for each egg batch biological quality was determined, what allowed to compare the gene expression profile with overall egg quality (divided into two groups representing ‘high’ and ‘low’ egg quality). The analysis allowed to identify 39 differently expressed genes between the two groups representing ‘high’ and ‘low’ egg quality. From those genes, expression level of 7 were verified by real-time qPCR which confirmed significant difference in expression in 5 of them.
Project description:We aimed at obtaining a reference transcriptome for the European seabass. We characterized by Illumina paired-ends RNA-seq the D. labrax transcriptome for two targeted organs, using a diversity of conditions, animal stages and genotypes to warranty the widest variety of reconstructed transcripts. The brain (including pineal gland and pituitary) and liver were chosen as they are complementary and at a crossroads of many key neuroendocrine, metabolic and behavioral regulations. Dicentrarchus labrax_2 targeted organs (liver and brain) with two technical replicates each (using two different fragment sizes) half a GAIIX run total. We used two flow cells per organ and each was corresponding to a different fragment size. The expected sizes were 350 and 500bp.
Project description:In this study, we attempt to characterize the transcriptomic profile of the Asian seabass brains collected from the male and female sexes. The objective is to identify genes that show sexually dimorphic expression in the brain of this species. For this experiment, Asian seabass were collected from the Marine Aquaculture Center of the Agri-Food & Veterinary Authority of Singapore. There were no treatments carried out in this experiment. Four brains from adult male seabass (5 years old) with M3-type testis and four brains from adult female seabass (5 years old) with F3-type ovaries were used in this experiment. (Gonads were examined by histology and classified according to sexual maturation status as described by Guiguen and colleagues (Guiguen et al. Environmental Biology of Fishes, 1994)).
Project description:In this study, we attempt to characterize the transcriptomic profile of the Asian seabass brains collected from the male and female sexes. The objective is to identify genes that show sexually dimorphic expression in the brain of this species. For this experiment, Asian seabass were collected from the Marine Aquaculture Center of the Agri-Food & Veterinary Authority of Singapore. There were no treatments carried out in this experiment. Four brains from adult male seabass (5 years old) with M3-type testis and four brains from adult female seabass (5 years old) with F3-type ovaries were used in this experiment. (Gonads were examined by histology and classified according to sexual maturation status as described by Guiguen and colleagues (Guiguen et al. Environmental Biology of Fishes, 1994)). Total 8 samples. Male Brain : 4 Female Brain : 4
Project description:In this study, we attempt to characterize the transcriptomic profile of the Asian seabass gonads at various developmental stages. The protandric Asian seabass or barramundi (Lates calcarifer) typically matures as a male at approximately 2–4 years of age and then changes sex to a female in later years. For this experiment, Asian seabass of several ages were collected from the Marine Aquaculture Center of the Agri-Food & Veterinary Authority of Singapore and from farms around Singapore. There were no treatments carried out in this experiment. The gonads were examined by histology and classified according to sexual maturation status as described by Guiguen and colleagues (Guiguen et al. Environmental Biology of Fishes, 1994). Altogether, we analyzed 22 gonadal samples that could be classified into six different types of gonads.
Project description:The sustainable growth of fish aquaculture will require the procurement of non-marine feed sources. Glycerol is a potential feed supplement whose metabolism may spare the catabolism of dietary amino acids, thereby extending the use of the feed protein to other physiological functions such as growth. In the present study, the effects of dietary glycerol supplementation on the muscle and liver metabolomes of rainbow trout (Oncorhynchus mykiss) and European seabass (Dicentrarchus labrax) were evaluated. Fish juveniles were fed diets with 0%, 2.5%, and 5% glycerol. Muscle and liver aqueous fractions were extracted and 1H NMR spectra were acquired. Metabolite profiles derived from the 1H NMR signals were assessed using univariate and multivariate statistical analyses. The adenylate energy charge was determined in the muscle. For both species, the muscle metabolite profile showed more variability compared to that of the liver and was most perturbed by the 5.0% glycerol diet. For the liver metabolite profile, rainbow trout showed fewer differences compared to European seabass. No differences were observed in energy charge between experimental groups for either species. Thus, rainbow trout appeared to be less susceptible to tissue metabolite perturbations, compared to seabass, when the diet was supplemented with up to 5% glycerol.
Project description:In this study, we attempt to characterize the transcriptomic profile of the Asian seabass gonads at various developmental stages. The protandric Asian seabass or barramundi (Lates calcarifer) typically matures as a male at approximately 2M-bM-^@M-^S4 years of age and then changes sex to a female in later years. For this experiment, Asian seabass of several ages were collected from the Marine Aquaculture Center of the Agri-Food & Veterinary Authority of Singapore and from farms around Singapore. There were no treatments carried out in this experiment. The gonads were examined by histology and classified according to sexual maturation status as described by Guiguen and colleagues (Guiguen et al. Environmental Biology of Fishes, 1994). Altogether, we analyzed 22 gonadal samples that could be classified into six different types of gonads. Total 22 samples: Adult Ovaries (F3-stage; 5 years old fish) : 4 Adult Testes (M3-stage; 5 years old fish) : 4 Early Testes (M3-stage; 8-9 months old fish) : 3 Early Transforming Gonads (>2 years old fish) : 3 Late Transforming Gonads (>2 years old fish) : 4 Undifferentiated Gonads (4.5 months old fish) : 4