Project description:We profiled the expression of circulating microRNAs (miRNAs) in mice exposed to gram-positive and gram-negative bacteria using Illumina small RNA deep sequencing. Recombinant-specific gram-negative pathogen Escherichia coli (Xen14) and gram-positive pathogen Staphylococcus aureus (Xen29) were used to induce bacterial infection in mice at a concentration of 1 × 108 bacteria/100 μL of phosphate buffered saline (PBS). Small RNA libraries generated from the serum of mice after exposure to PBS, Xen14, Xen29, and Xen14+Xen29 via the routes of subcutaneous injection (I), cut wound (C), or under grafted skin (S) were analyzed using an Illumina HiSeq2000 Sequencer. Following exposure to gram-negative bacteria alone, no differentially expressed miRNA was found in the injection, cut, or skin graft models. Exposure to mixed bacteria induced a similar expression pattern of the circulating miRNAs to that induced by gram-positive bacterial infection. Upon gram-positive bacterial infection, 9 miRNAs (mir-193b-3p, mir-133a-1-3p, mir-133a-2-3p, mir-133a-1-5p, mir-133b-3p, mir-434-3p, mir-127-3p, mir-676-3p, mir-215-5p) showed upregulation greater than 4-fold with a p-value < 0.01. Among them, mir-193b-3p, mir-133a-1-3p, and mir-133a-2-3p presented the most common miRNA targets expressed in the mice exposed to gram-positive bacterial infection. Male C57BL/6 mice (age, 10–12 weeks; weight, 30–35 g) were purchased from BioLasco (Yi-Lan, Taiwan). The mice were anesthetized by intraperitoneal injection of an anesthetic cocktail consisting of 0.1 mg/g ketamine and 0.01 mg/g xylazine. The anesthetized mice were restrained in a supine position on a heated pad to maintain body temperature at 37°C. Recombinant-specific gram-negative pathogen Escherichia coli (Xen14) and gram-positive pathogen Staphylococcus aureus (Xen29) purchased from Caliper (Caliper, USA) were used to induce bacterial infection in the mice at a concentration of 1 × 108 bacteria/100 μL of phosphate buffered saline (PBS). To create mixed gram-negative and gram-positive bacterial infection, 1 × 108 Xen14 bacteria and 1 × 108 Xen29 bacteria/100 μL of PBS were used for wound contamination. Three animal models were used to create bacterial infection routes: subcutaneous injection (hereafter referred to as (I)), cut wound (hereafter referred to as (C)), and skin grafting (hereafter referred to as (S)). In the (I) model, E. coli and/or S. aureus suspensions were injected subcutaneously into the backs of the mice using an Fr. 25 needle. In the (C) model, a 1 cm incision wound was created in the midline of the back, smeared with E. coli and/or S. aureus suspension, and the wound was closed directly with a 4-0 nylon suture. In the (S) model, a 1×1 cm rectangular full- thickness skin graft was lifted from the backs of the mice, E. coli and/or S. aureus suspensions were spread over the wound bed, and the skin graft was reattached and closed with a 4-0 nylon suture. An additional group of animals in each of these three models was inoculated with PBS to serve as a negative control. Small RNA libraries generated from the serum of mice after exposure to PBS, Xen14, Xen29, and Xen14+Xen29 via the routes of subcutaneous injection (I), cut wound (C), or under grafted skin (S) were analyzed using an Illumina HiSeq2000 Sequencer.
2014-08-19 | E-GEOD-60492 | biostudies-arrayexpress