Project description:Microtoming Coupled with Microarray Analysis to Evaluate Potential Differences in the Metabolic Status of Geobacter sulfurreducens at Different Depths in Anode Biofilms Differences in the Metabolic Status of Geobacter sulfurreducens at Different Depths in A Current Producing Biofilm Further insight into the metabolic status of cells within anode biofilms is essential for understanding the functioning of microbial fuel cells and developing strategies to optimize their power output. In order to further compare the metabolic status of cells growing close to the anode versus cells in the outer portion of the anode biofilm, mature anode biofilms were treated to stop turnover over of mRNA and then encased in resin which was sectioned into 100 nm shavings with a diamond knife and pooled into inner (0-20 µm from anode surface) and outer (30-60 µm) fractions. Whole genome DNA microarray analysis of RNA extracted from the shavings revealed that, at a 2-fold lower threshold, there were 146 genes that had significant (p<0.05), differences in transcript abundance between the inner and outer portions of the biofilm. Only 1 gene, GSU0093, a hypothetical ABC transporter, had significantly higher transcript abundances in the outer biofilm. Genes with lower transcript abundance in the outer biofilm included genes for ribosomal proteins and NADH dehydrogenase, suggesting that cells in the outer biofilm had lower metabolic rates. However, the differences in transcript abundance were relatively low (<3-fold) and the outer biofilm did not have significantly lower expression of the genes for TCA cycle enzymes which previous studies have demonstrated are sensitive indicators of changes in rates of metabolism in G. sulfurreducens. There also was no significant difference in the transcript levels for outer-surface cell components thought to be important in electron transfer in anode biofilms. Lower expression of genes involved in stress responses in the outer biofilm may reflect the development of low pH near the surface of the anode. The results of the metabolic staining and gene expression studies suggest that cells throughout the biofilm are metabolically active and can potentially contribute to current production. The microtoming/microarray strategy described here may be useful for evaluating gene expression with depth in a diversity of microbial biofilms.
Project description:Microtoming Coupled with Microarray Analysis to Evaluate Potential Differences in the Metabolic Status of Geobacter sulfurreducens at Different Depths in Anode Biofilms Differences in the Metabolic Status of Geobacter sulfurreducens at Different Depths in A Current Producing Biofilm Further insight into the metabolic status of cells within anode biofilms is essential for understanding the functioning of microbial fuel cells and developing strategies to optimize their power output. In order to further compare the metabolic status of cells growing close to the anode versus cells in the outer portion of the anode biofilm, mature anode biofilms were treated to stop turnover over of mRNA and then encased in resin which was sectioned into 100 nm shavings with a diamond knife and pooled into inner (0-20 µm from anode surface) and outer (30-60 µm) fractions. Whole genome DNA microarray analysis of RNA extracted from the shavings revealed that, at a 2-fold lower threshold, there were 146 genes that had significant (p<0.05), differences in transcript abundance between the inner and outer portions of the biofilm. Only 1 gene, GSU0093, a hypothetical ABC transporter, had significantly higher transcript abundances in the outer biofilm. Genes with lower transcript abundance in the outer biofilm included genes for ribosomal proteins and NADH dehydrogenase, suggesting that cells in the outer biofilm had lower metabolic rates. However, the differences in transcript abundance were relatively low (<3-fold) and the outer biofilm did not have significantly lower expression of the genes for TCA cycle enzymes which previous studies have demonstrated are sensitive indicators of changes in rates of metabolism in G. sulfurreducens. There also was no significant difference in the transcript levels for outer-surface cell components thought to be important in electron transfer in anode biofilms. Lower expression of genes involved in stress responses in the outer biofilm may reflect the development of low pH near the surface of the anode. The results of the metabolic staining and gene expression studies suggest that cells throughout the biofilm are metabolically active and can potentially contribute to current production. The microtoming/microarray strategy described here may be useful for evaluating gene expression with depth in a diversity of microbial biofilms. Three biological replicates were hybridized in triplicate on a coustom affimetrix tilling array using prokaryotic protocol (p69Affy, p75 Adobe) for labeling, hybridization and scanning.
Project description:Investigation of whole genome gene expression level changes in a Shewanella oneidensis MR-1 to Fe nanoparticle decorated anodes, compared to the carbon plate anodes in microbial electrolysis cells. Whole genome microarray analysis of the gene expression showed that the encoding biofilm formation genes were significantly up-regulated as response to nanoparticle decorated anodes which indicated thickness improvements contributed to enhance current density. The increased expression genes related to nanowire, flavins and c-type cytochromes also have partially contributed to enhance current density by Fe nanoparticle decorated anode. The majority of additional differentially expressed genes associated with electron transport, anaerobic metabolism in response to the nanostructured anodes possibly play roles in current density enhancement. A six chip study using total RNA recovered from three separate replicates of biofilm on Fe Nanoparticle decorated anode of Shewanella oneidensis MR-1 and three separate replicates of carbon plate control. Each chip measures the expression level of 4,295 genes .
Project description:Investigation of whole genome gene expression level changes in a Shewanella oneidensis MR-1 to Fe nanoparticle decorated anodes, compared to the carbon plate anodes in microbial electrolysis cells. Whole genome microarray analysis of the gene expression showed that the encoding biofilm formation genes were significantly up-regulated as response to nanoparticle decorated anodes which indicated thickness improvements contributed to enhance current density. The increased expression genes related to nanowire, flavins and c-type cytochromes also have partially contributed to enhance current density by Fe nanoparticle decorated anode. The majority of additional differentially expressed genes associated with electron transport, anaerobic metabolism in response to the nanostructured anodes possibly play roles in current density enhancement.