Project description:Plants and rhizosphere microbes rely closely on each other, with plants supplying carbon to bacteria in root exudates, and bacteria mobilizing soil-bound phosphate for plant nutrition. When the phosphate supply becomes limiting for plant growth, the composition of root exudation changes, affecting rhizosphere microbial communities and microbially-mediated nutrient fluxes. To evaluate how plant phosphate deprivation affects rhizosphere bacteria, Lolium perenne seedlings were root-inoculated with Pseudomonas aeruginosa 7NR, and grown in axenic microcosms under different phosphate regimes (330 uM vs 3-6 uM phosphate). The effect of biological nutrient limitation was examined by DNA microarray studies of rhizobacterial gene expression.
Project description:Long-term dietary intake influences the structure and activity of the trillions of microorganisms residing in the human gut, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles. RNA-Seq analysis of the human gut microbiome during consumption of a plant- or animal-based diet.
Project description:Here, we examine the transcriptomic response of adult wild-type and BrphyB leaves to darkening and recovery in light. Three days of dark was sufficient to elicit a response in wild type leaves suggesting a shift from carbon fixation and nutrient acquisition to active redistribution of cellular resources. Upon a return to light, wild-type leaves appeared to transcriptionally return to a pre-darkness state restoring a focus on nutrient acquisition. BrphyB mutant plants have a similar response with key differences in genes involved in photosynthesis and light response which deviate from the wild type transcriptional dynamics. Genes targeted to the chloroplast are especially affected. Adult plants had fewer, larger chloroplasts suggesting a link between phytochromes, chloroplast development, photosynthetic deficiencies and resource allocation.
Project description:Long-term dietary intake influences the structure and activity of the trillions of microorganisms residing in the human gut, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles.
Project description:Plants live in soils that vary considerably, both spatially and over time, in terms of nutrient composition and pH. Consistently, plants have to recognize and adapt to these changes by altering their structure and metabolism. The goal of this array analysis is to characterize the global transcriptional response to external pH changes in roots, which to date is almost unexplored. Arabidopsis thaliana (Columbia-0) were grown in hydroponic cultures in basic nutrient solution. Two days before treatment the media was shifted to nutrient solution containing 5mM MES, pH 6. At the time of the treatment start (4 hours after light on) the plants were shifted to nutrient solutions of pH 4.5 and 6.0 (control). Root RNA samples from time point 1 and 8 hour after treatment start is used for array analyzes. Keywords: Expression profilling by array
Project description:Plants live in soils that vary considerably, both spatially and over time, in terms of nutrient composition and pH. Consistently, plants have to recognize and adapt to these changes by altering their structure and metabolism. The goal of this array analysis is to characterize the global transcriptional response to external pH changes in roots, which to date is almost unexplored. Arabidopsis thaliana (Columbia-0) were grown in hydroponic cultures in basic nutrient solution. Two days before treatment the media was shifted to nutrient solution containing 5mM MES, pH 6. At the time of the treatment start (4 hours after light on) the plants were shifted to nutrient solutions of pH 4.5 and 6.0 (control). Root RNA samples from time point 1 and 8 hour after treatment start is used for array analyzes. Keywords: Expression profilling by array 12 samples were used in this experiment
Project description:Nepenthes is a genus of carnivorous plants that evolved a pitfall trap, the pitcher, to catch and digest insect prey to obtain additional nutrients. Each pitcher is part of the whole leaf, together with a leaf blade. These two completely different parts of the same organ were studied separately in a non-targeted metabolomics approach in Nepenthes x ventrata, a robust natural hybrid. The first aim was the analysis and profiling of small (50-1000 m/z) polar and non-polar molecules to find a characteristic metabolite pattern for the particular tissues. Second, the impact of insect feeding on the metabolome of the pitcher and leaf blade was studied. Using UPLC-ESI-qTOF and cheminformatics, about 2000 features (MS/MS events) were detected in the two tissues. They showed a huge chemical diversity, harboring classes of chemical substances that significantly discriminate these tissues. Among the common constituents of N. x ventrata are phenolics, flavonoids and naphthoquinones, namely plumbagin, a characteristic compound for carnivorous Nepenthales, and many yet-unknown compounds. Upon insect feeding, only in pitchers in the polar compounds fraction, small but significant differences could be detected. By further integrating information with cheminformatics approaches, we provide and discuss evidence that the metabolite composition of the tissues can point to their function.