Project description:Hispanic/Latino populations possess a complex genetic structure that reflects recent admixture among and potentially ancient substructure within Native American, European, and West African source populations. Here, we quantify genome-wide patterns of SNP and haplotype variation among 100 individuals with ancestry from Ecuador, Colombia, Puerto Rico, and the Dominican Republic genotyped using Illumina technology.
Project description:Investigation of the kinetics of whole genome gene expression level changes in Bacillus subtilis NDmed strain during formation of submerged biofilm and pellicle. The Bacillus subtilis NDmed strain analyzed in this study is able to form thick and highly structured submerged biofilms as described in Bridier et al., (2011) The Spatial Architecture of Bacillus subtilis Biofilms Deciphered Using a Surface-Associated Model and In Situ Imaging. PLoS ONE 6(1):e16177.
Project description:Hispanic/Latino populations possess a complex genetic structure that reflects recent admixture among and potentially ancient substructure within Native American, European, and West African source populations. Here, we quantify genome-wide patterns of SNP and haplotype variation among 100 individuals with ancestry from Ecuador, Colombia, Puerto Rico, and the Dominican Republic genotyped using Illumina technology. To investigate variations of continental ancestry between different Hispanic/Latino groups (using self-reported country-specific identification of individual, both parents, and all four grandparents) and within them from healthy controls represented in the New York Health Project Biorepository. Genotyped on the Illumina 610-Quad, which is identical to HumanHap550-v3 SNPs plus an additional ~60,000 SNPs for CNV, no CNV data is provided or was analyzed.
Project description:Bacillus subtilis has been extensively used as a model for molecular studies on biofilm formation. These studies encompassed the development of complex macro-colonies on agar, the formation of pellicles at the air-liquid interface, and lately the formation of submerged architectural biofilms at the solid-liquid interface. Beside similarities, these multicellular communities also display considerable heterogeneity at the structural, chemical and biological levels. Here we use RNA-seq to analyze nine different spatio-physiological conditions, including the three biofilm populations (colony, pellicle, and submerged).