Project description:Background. The Beijing family of Mycobacterium tuberculosis is dominant in countries in East Asia. Genomic polymorphisms are a source of diversity within the M.tuberculosis genome and may account for the variation of virulence among M.tuberculosis isolates. To date there are no studies that have examined the genomic composition of M.tuberculosis isolates from the high TB-burden country, Myanmar. Methodology/Principle findings. Twenty-two M.tuberculosis isolates from Myanmar were screened on whole-genome arrays containing genes from M.tuberculosis H37Rv, M.tuberculosis CDC1551 and M.bovis AF22197. Screening identified 198 deletions or extra regions in the clinical isolates compared to H37Rv. Twenty-two regions differentiated between Beijing and non-Beijing isolates and were verified by PCR on an additional 40 isolates. Six regions (Rv0071-0074 [RD105], Rv1572-1576c [RD149], Rv1585c-1587c[RD149], MT1798-Rv1755c [RD152], Rv1761c [RD152] and Rv0279c) were deleted in Beijing isolates, of which 4 (Rv1572-1576c, Rv1585c-1587c, MT1798-Rv1755c and Rv1761c) were variably deleted among ST42 isolates, indicating a closer relationship between the Beijing and ST42 lineages. The TbD1 region, Mb1582-Mb1583 was deleted in Beijing and ST42 isolates. One M.bovis gene of unknown function, Mb3184c was present in all isolates, except 11 of 13 ST42 isolates. The CDC1551 gene, MT1360 coding for a putative adenylate cyclase, was present in all Beijing and ST42 isolates (except 1). The pks15/1 gene, coding for a putative virulence factor, was intact in all Beijing and non-Beijing isolates, except in ST42 and ST53 isolates. Conclusion. This study describes previously unreported deletions/extra regions in Beijing and non-Beijing M.tuberculosis isolates. The modern and highly frequent ST42 lineage showed a closer relationship to the hypervirulent Beijing lineage than to the ancient non-Beijing lineages. The pks15/1 gene was disrupted only in modern non-Beijing isolates. This is the first report of an in-depth analysis on the genomic diversity of M.tuberculosis isolates from Myanmar. Data is also available from http://bugs.sgul.ac.uk/E-BUGS-66
Project description:Transcriptional profile comparison among Beijing and non-Beijing M. tuberculosis isolates. Three M. tuberculosis strains were compared. The laboratory reference strain, H37Rv, belongs to the Euro-American or lineage 4. Two clinical isolates of the East-Asian or lineage 2: 98_1663 is a pre-Beijing or Group 1 isolate, and HN878 is a Beijing or Group 5 isolate. Three replicates were performed for each comparison using two different biological samples.
Project description:This study aims to determine the epidemiology of Enterobacteriaceae resistant to antibiotics of last resort in pregnant women in labour at a tertiary hospital, Pretoria, South Africa. Rectal swabs shall be used to screen for colonisation with CRE and colistin-resistant Enterobacteriales in pregnant women during labour. Carbapenem and colistin-resistant Enterobacterales can cause the following infections: bacteraemia; nosocomial pneumonia; urinary tract infections, and intra-abdominal infections. Due to limited treatment options, infections caused by these multidrug-resistant organisms are associated with a mortality rate of 40-50%. Screening for colonisation of carbapenem-resistant Enterobacteriaceae (CRE) and colistin-resistant Enterobacteriaceae will help implement infection and prevention measures to limit the spread of these multidrug-resistant organisms.
Project description:Human chronic infectious diseases have been shown to alter the composition and phenotype of the B cell compartment, which, in part, can attribute to failure to acquire protective immunity. However, the extent of such alterations is poorly understood. Here, using a combination of bulk and single cell RNA-sequencing (scRNA-seq) of B cells in individuals living in malaria-endemic Africa, we characterized changes in naïve B cell, classical memory B cell (MBC) and atypical MBC subsets. Of particular interest were unswitched atypical MBCs that expanded in children upon the onset of febrile malaria. This subpopulation expressed IgD but only low levels of IgM (IgD+IgMlo), high levels of the atypical MBC markers, Tbet and CD11c, as well as the intrinsically autoreactive VH4-34. IgD+IgMlo atypical MBCs were distinguished functionally by their acquisition of high antigen-affinity thresholds for activation, suggesting the IgD+IgMlo atypical MBC expansion during febrile malaria may reduce responses to low affinity self-antigens during acute malaria
Project description:Human chronic infectious diseases have been shown to alter the composition and phenotype of the B cell compartment, which, in part, can attribute to failure to acquire protective immunity. However, the extent of such alterations is poorly understood. Here, using a combination of bulk and single cell RNA-sequencing (scRNA-seq) of B cells in individuals living in malaria-endemic Africa, we characterized changes in naïve B cell, classical memory B cell (MBC) and atypical MBC subsets. Of particular interest were unswitched atypical MBCs that expanded in children upon the onset of febrile malaria. This subpopulation expressed IgD but only low levels of IgM (IgD+IgMlo), high levels of the atypical MBC markers, Tbet and CD11c, as well as the intrinsically autoreactive VH4-34. IgD+IgMlo atypical MBCs were distinguished functionally by their acquisition of high antigen-affinity thresholds for activation, suggesting the IgD+IgMlo atypical MBC expansion during febrile malaria may reduce responses to low affinity self-antigens during acute malaria
Project description:Tuberculosis continues as an important public health problem. Particularly considering Beijing-family strains of Mycobacterium tuberculosis, which have been associated with drug-resistance and hypervirulence. The Beijing-like SIT190 (BL) is the most prevalent Beijing strain in Colombia. The pathogenic mechanism and immune response against this pathogen is unknown. Thus, we compared the course of pulmonary TB in BALB/c mice infected with Classical-Beijing strain 391 and BL strain 323. The disease course was different among infected animals with Classical-Beijing and BL strain. Mice infected with BL had a 100% mortality at 45 days post-infection (dpi), with high bacillary loads and massive pneumonia, whereas infected animals with Classical-Beijing survived until 60 dpi and showed extensive pneumonia and necrosis. Lung RNA extraction was carried out at early (day 3 dpi), intermediate (day14 dpi), and late (days 28 and 60 dpi) time points of infection. Transcriptional analysis of infected mice with Classical-Beijing showed several over-expressed genes, associated with a pro-inflammatory profile, including those for coding for CCL3 and CCL4 chemokines, both biomarkers of disease severity. Contrary, mice infected with BL displayed a profile which included the over-expression of several genes associated with immune- suppression, including Nkiras, Dleu2 and Sphk2, highlighting an anti-inflammatory milieu which would allow high bacterial replication followed by an intense inflammatory response. In summary, both Beijing strains induced a non-protective immune response which induced extensive tissue damage, BL strain induced rapidly extensive pneumonia and death, whereas Classical-Beijing strain produced slower extensive pneumonia later associated with extensive necrosis.