Project description:Modern genetic data combined with appropriate statistical methods have the potential to contribute substantially to our understanding of human history. We have developed an approach that exploits the genomic structure of admixed populations to date and characterize historical mixture events at fine scales. We used this to produce an atlas of worldwide human admixture history, constructed using genetic data alone and encompassing over 100 events occurring over the past 4,000 years. We identify events whose dates and participants suggest they describe genetic impacts of the Mongol Empire, Arab slave trade, Bantu expansion, first millennium CE migrations in eastern Europe, and European colonialism, as well as unrecorded events, revealing admixture to be an almost universal force shaping human populations.
Project description:Plants cope with low phosphorus availability by adjusting growth and metabolism through transcriptomic adaptations. We hypothesize that selected genotypes with distinct P use efficiency covering the breeding history of European heterotic pool allow us to reveal general and genotype-specific molecular responses correlated with low phosphate induced traits.
Project description:Modern genetic data combined with appropriate statistical methods have the potential to contribute substantially to our understanding of human history. We have developed an approach that exploits the genomic structure of admixed populations to date and characterize historical mixture events at fine scales. We used this to produce an atlas of worldwide human admixture history, constructed using genetic data alone and encompassing over 100 events occurring over the past 4,000 years. We identify events whose dates and participants suggest they describe genetic impacts of the Mongol Empire, Arab slave trade, Bantu expansion, first millennium CE migrations in eastern Europe, and European colonialism, as well as unrecorded events, revealing admixture to be an almost universal force shaping human populations. 158 indviduals of Eurasian descent included as part of a global analysis of admixture
Project description:Purpose: To investigate the quaternary structures of Rhodopsin-family GPCRs. Method: Analyzed 60 receptors from HEK 293T cells. Results: 1) Most of these receptors are monomers. 2) The phylogenetic distribution of dimers suggests that monomers have an evolutionary advantage due to constraints imposed by dimerization on rates of receptor diversification.
Project description:One current concept suggests that unchecked proliferation of clonally selected precursors of endothelial cells contribute to severe pulmonary arterial hypertension (pAH). We hypothesized that clonally selected ECs expressing the progenitor marker CD117 promote severe occlusive pulmonary hypertension (PH). We used microarrays to identify the steady state gene expression profile of quaternary clones derived from CD117+ rat lung ECs vs control ECs derived from rat lung CD117- cells.
2022-03-10 | GSE198151 | GEO
Project description:Quaternary range dynamics in alpine plants
Project description:The transcriptome of naive OT-I T cells was compared to memory CD8 T cells after 1, 2, 3, or 4 infection with ovalbumin expressing Listeria monocytogenes (LM-OVA). Naive Thy1.1 OT-I T cells were adoptively transferred into Thy1.2 naive hosts prior to infection with LM-OVA. The resulting memory CD8 T cell population was again adoptively transferred into naive hosts and the recipient mice were again infected with LM-OVA. The adoptive transfer was repeated up to four times to generate memory CD8 T cells with up to four consecutive antigen stimulations. Three individual mice were analyzed for each group. For quaternary memory CD8 T cells, spleens from two to three mice were pooled for each sample. Naive OT-I T cells served as control samples. http://dx.doi.org/10.1016/j.immuni.2010.06.014
Project description:Phase separation and reversible aggregation of proteins is a well-recognized adaptive strategy to survive stress. Here, we show that RCC subunits are engaged into improved super-quaternary organizations inside mitochondria during proteostasis stress. Assembly and oligomeric organizations of Complex II and V are consolidated while Complex I, III and IV are increasingly incorporated into respiratory supercomplexes in multiple cell-lines with different proteostasis and metabolic demands. Further, our results suggest that improved supra-organization of respiratory complexes (iSRC) is an outcome of conformational optimization towards better enzyme activity and co-terminus to appearance of aggregates of RCC subunits in stressed cells. Simultaneous reversion of iSRC and disappearance of aggregates during stress-withdrawal indicates complementarity between these quaternary and quinary proteome-reorganization mechanisms. iSRC appears to be the pre-emptive and deterministic ensemble over stochastic aggregation as it offers direct fitness-benefit.
Project description:Phase separation and reversible aggregation of proteins is a well-recognized adaptive strategy to survive stress. Here, we show that RCC subunits are engaged into improved super-quaternary organizations inside mitochondria during proteostasis stress. Assembly and oligomeric organizations of Complex II and V are consolidated while Complex I, III and IV are increasingly incorporated into respiratory supercomplexes in multiple cell-lines with different proteostasis and metabolic demands. Further, our results suggest that improved supra-organization of respiratory complexes (iSRC) is an outcome of conformational optimization towards better enzyme activity and co-terminus to appearance of aggregates of RCC subunits in stressed cells. Simultaneous reversion of iSRC and disappearance of the aggregates during stress-withdrawal indicates complementarity between these quaternary and quinary proteome-reorganization mechanisms. iSRC appears to be the pre-emptive and deterministic ensemble over stochastic aggregation as it offers direct fitness-benefit.