Project description:The olive baboon represents an important model system to study various aspects of human biology and health, including the origin and diversity of the major histocompatibility complex. After screening of a group of related animals for polymorphisms associated with a well-defined microsatellite marker, subsequent MHC class I typing of a selected population of 24 animals was performed on two distinct next-generation sequencing (NGS) platforms. A substantial number of 21 A and 80 B transcripts were discovered, about half of which had not been previously reported. Per animal, from one to four highly transcribed A alleles (majors) were observed, in addition to ones characterised by low transcripion levels (minors), such as members of the A*14 lineage. Furthermore, in one animal, up to 13 B alleles with differential transcription level profiles may be present. Based on segregation profiles, 16 Paan-AB haplotypes were defined. A haplotype encodes in general one or two major A and three to seven B transcripts, respectively. A further peculiarity is the presence of at least one copy of a B*02 lineage on nearly every haplotype, which indicates that B*02 represents a separate locus with probably a specialistic function. Haplotypes appear to be generated by recombination-like events, and the breakpoints map not only between the A and B regions but also within the B region itself. Therefore, the genetic makeup of the olive baboon MHC class I region appears to have been subject to a similar or even more complex expansion process than the one documented for macaque species.
Project description:We report FLAM-seq, a cDNA library preparation method coupled to PacBio single-molecule sequencing for profiling full-length mRNAs including their poly(A) tail.
Project description:We applied the NanoString gene expression platform to total RNA isolated from the vomeronasal mucosa of mice of a strain (M-bM-^HM-^FH2Mv) in which we had excised with chromosome engineering a 530 kb genomic region that encompasses nine non-classical class I MHC genes that are expressed specifically in vomeronasal sensory neurons. At three weeks of age, there is no difference of expression for all Vmn2r genes tested; and at eight weeks of age, there is no difference of expression for the majority of Vmn2r genes. We designed NanoString probes for one third of the mouse Vmn2r gene repertoire, based on the reference C57BL/6 genome sequence. CodeSet Chanel includes probes for 46 Vmn2r genes and nine non-classical class I MHC H2-Mv genes that are expressed specifically in mouse vomeronasal sensory neurons. Results were analyzed with tTREAT.
Project description:Sooty mangabeys (Cercocebus atys) are natural SIV hosts and the presumed source of HIV-2 and SIVmac, which makes them a valuable model for HIV/SIV research. However, like other African primates, little is known about their major histocompatibility complex (MHC) genetics. In this study, we used Roche/454 and Illumina MiSeq deep sequencing in order to determine the MHC class I transcripts in a cohort of 165 sooty mangabeys from the Yerkes National Primate Research Center (YNPRC). We have characterized 121 functionally full-length classical (Ceat-A and Ceat-B) and non-classical (Ceat-F and Ceat-I) alleles and have also identified 22 Ceat-A/Ceat-B haplotype chromosomal combinations. We correlated these Ceat-A/Ceat-B haplotype combinations to recently described microsatellite haplotypes from the YNPRC colony. These newly identified alleles and haplotypes establish a resource for studying cellular immunity in sooty mangabeys and provide a framework for rapidly cataloging MHC class I sequences in an understudied, yet important, nonhuman primate species.
Project description:In recent years, the use of cynomolgus macaques in biomedical research has increased greatly. However, with the exception of the Mauritian population, knowledge of the MHC class II genetics of the species remains limited. Here, using cDNA cloning and Sanger sequencing, we identified 127 full-length MHC class II alleles in a group of 12 Indonesian and 12 Vietnamese cynomolgus macaques. Forty two of these were completely novel to cynomolgus macaques while 61 extended the sequence of previously identified alleles from partial to full length. This more than doubles the number of full-length cynomolgus macaque MHC class II alleles available in GenBank, significantly expanding the allele library for the species and laying the groundwork for future evolutionary and functional studies.