Project description:In present study, Transcriptome analysis revealed unique differentially expressed genes (DEGs). including transcription factors (TFs), during root development in D. asperoides. In addition, α-linolenic acid metabolism, jasmonic acid (JA) biosynthesis, JA signal transduction, sesquiterpenoid and triterpenoid biosynthesis, and terpenoid backbone biosynthesis were prominently enriched.
Project description:We transcriptional profiled four transcription factor knockout strains in S288C background growing in YNB media + 2% glucose to understand the link between mRNA levels and our measured C13 fluxes of amino acid biosynthesis. We conducted this analysis as a follow up to our work on the Gcn4p transcription factor. Keywords: genetic modification
Project description:Salvia miltiorrhiza is one of the most popular traditional medicinal herbs in Asian nations. Its dried root contains a number of tanshinones, protocatechuic aldehyde, salvianolic acid B and rosmarinic, and is used for the treatment of various diseases. To make clear the molecular mechanism of tanshinones biosynthesis in S. miltiorrhiza, the tissue-specific miRNAs and their target genes were identified by high-throughput sequencing and degradome analysis. A total of 452 known miRNAs corresponding to 589 pre-miRNAs, and 40 novel miRNAs corresponding to 24 pre-miRNAs were identified in different tissues of S. miltiorrhiza, respectively. Among them, 62 miRNAs express only in root, 95 miRNAs express only in stem, 19 miRNAs express only in leaf, and 71 miRNAs express only in flower, respectively. By the degradome analysis, 69 targets potentially cleaved by 25 miRNAs were identified. Among them, Acetyl-CoA C-acetyltransferase was identified in S. miltiorrhiza, which was cleaved by miR5072 and involved in the biosynthesis of tanshinones. This study provided valuable information for understanding the tissues expression patterns of miRNAs, and offered a foundation for future studies of the miRNA-mediated tanshinones biosynthesis in S. miltiorrhiza. The tissue-specific miRNAs and their target genes were identified by high-throughput sequencing and degradome analysis.
Project description:Salvia miltiorrhiza is one of the most popular traditional medicinal herbs in Asian nations. Its dried root contains a number of tanshinones, protocatechuic aldehyde, salvianolic acid B and rosmarinic, and is used for the treatment of various diseases. To make clear the molecular mechanism of tanshinones biosynthesis in S. miltiorrhiza, the tissue-specific miRNAs and their target genes were identified by high-throughput sequencing and degradome analysis. A total of 452 known miRNAs corresponding to 589 pre-miRNAs, and 40 novel miRNAs corresponding to 24 pre-miRNAs were identified in different tissues of S. miltiorrhiza, respectively. Among them, 62 miRNAs express only in root, 95 miRNAs express only in stem, 19 miRNAs express only in leaf, and 71 miRNAs express only in flower, respectively. By the degradome analysis, 69 targets potentially cleaved by 25 miRNAs were identified. Among them, Acetyl-CoA C-acetyltransferase was identified in S. miltiorrhiza, which was cleaved by miR5072 and involved in the biosynthesis of tanshinones. This study provided valuable information for understanding the tissues expression patterns of miRNAs, and offered a foundation for future studies of the miRNA-mediated tanshinones biosynthesis in S. miltiorrhiza.
Project description:A. terreus LYT10 is an industrial strain for itaconic acid production, in which the biosynthesis of itaconic acid and glucose conversion rate were affected by temperature and initial concentration of itaconic acid in industrial production. RNA-seq was used to identify the key regulators related to tolerance mechanism toward various stress conditions.
Project description:In plants, fatty acids are de novo synthesized predominantly in plastids fromacetyl-CoA. Although fatty acid biosynthesis has been biochemically well-studied, little isknown about the regulatory mechanisms of the pathway. Here, we show that overexpressionof the Arabidopsis (Arabidopsis thaliana) LEAFY COTYLEDON1 (LEC1) gene causesglobally increased expression of fatty acid biosynthetic genes, which are involved in keyreactions of condensation, chain elongation and desaturation of fatty acid biosynthesis. Inthe plastidial fatty acid synthetic pathway, over 58% of known enzyme-coding genes areupregulated in LEC1-overexpressing transgenic plants, including those encoding threesubunits of acetyl-CoA carboxylase, a key enzyme controlling the fatty acid biosynthesisflux. Moreover, genes involved in glycolysis and lipid accumulation are also upregulated.Consistent with these results, levels of major fatty acid species and lipids were substantiallyincreased in the transgenic plants. Genetic analysis indicates that the LEC1 function ispartially dependent on ABSCISIC ACID INSENSITIVE3, FUSCA3 and WRINKLED1 in theregulation of fatty acid biosynthesis. Moreover, a similar phenotype was observed intransgenic Arabidopsis plants overexpressing two LEC1-like genes of Brassica napus.These results suggest that LEC1 and LEC1-like genes act as key regulators to coordinate theexpression of fatty acid biosynthetic genes, thereby representing a promising target forgenetic improvement of oil-production plants.
Project description:A. terreus LYT10 is an industrial strain for itaconic acid production, in which the biosynthesis of itaconic acid and glucose conversion rate were affected by temperature and initial concentration of itaconic acid in industrial production. RNA-seq was used to identify the key regulators related to tolerance mechanism toward various stress conditions. A total of 4 samples were analzyed. The mycelia cultivated in itaconic acid production medium (IPM) on a rotary shaker at 220 rpm and 37°C for 36 h was considered as a reference. IPMs with 5 g/L and 40 g/L itaconic acid (pH 3.25) were used for high-acid culture respectively. High-temperature condition was possesed at 42°C for 36 h in IPM.
Project description:Besides being building blocks for protein synthesis, amino acids serve a wide variety of cellular functions, including acting as metabolic intermediates for ATP generation and for redox homeostasis. Upon amino acid deprivation, free uncharged tRNAs trigger GCN2-ATF4 to mediate the well-characterized transcriptional amino acid response (AAR). However, it is not clear whether the deprivation of different individual amino acids triggers identical or distinct AARs. Here, we characterized the global transcriptional response upon deprivation of one amino acid at a time. With the exception of glycine, which was not required for the proliferation of MCF7 cells, we found that the deprivation of most amino acids triggered a shared transcriptional response that included the activation of ATF4, p53 and TXNIP. However, there was also significant heterogeneity among different individual AARs. The most dramatic transcriptional response was triggered by methionine deprivation, which activated an extensive and unique response in different cell types. We uncovered that the specific methionine-deprived transcriptional response required creatine biosynthesis. This dependency on creatine biosynthesis was caused by the consumption of S-Adenosyl-L-methionine (SAM) during creatine biosynthesis that helps to deplete SAM under methionine deprivation and reduces histone methylations. As such, the simultaneous deprivation of methionine and sources of creatine biosynthesis (either arginine or glycine) abolished the reduction of histone methylation and the methionine-specific transcriptional response. Arginine-derived ornithine was also required for the complete induction of the methionine-deprived specific gene response. Collectively, our data identify a previously unknown set of heterogeneous amino acid responses and reveal a distinct methionine-deprived transcriptional response that results from the crosstalk of arginine, glycine and methionine metabolism via arginine/glycine-dependent creatine biosynthesis. RNA was extracted by RNAeasy kits (Qiagen) from the MCF7 or PC3 cells which exposed to the control full DMEM or deprived one (or all) amino acid media for 24 or 48 hours.
Project description:We report a next-generation sequencing of total RNA from Pseudomonas aeruginosa PAO1 grown in presence of rosmarinic acid (RA) 100mM. Data analysis in comparison with cells grown in absence of RA revealed that the plant compound RA induces a broad transcriptional response in this bacterium, quite similar to the quorum sensing response.