Project description:The take-all disease caused by the soilborne fungus Gaeumannomyces graminis var tritici (Ggt) is one of the most-studied and widespread root diseases worldwide. Here, we investigated the ability of the earthworm Aporrectodea caliginosa to induce take-all disease tolerance in Triticum aestivum.
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of leaf color at different development stages. The goals of this study are to compare anthocyanin biosynthesis, chlorophyll metabolism and chloroplast organization transcriptome profiling (RNA-seq) to microarray and quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods and to evaluate protocols for optimal high-throughput data analysis Methods: Leaf mRNA profiles of 12 RNA sequencing libraries (S1, S2, S3_S, and S3_C) were generated by deep sequencing, in triplicate, using an Illumina HiSeq 4000 system. After removing reads of low quality, those that remained were mapped to the reference genome (ftp://ftp.ensemblgenomes.org/pub/release-38/plants/genbank/brassica_oleracea/) using the HISAT package, allowing for a maximum of two mismatches and multiple alignments per read (up to 20 by default). qRT–PCR validation was performed using SYBR Green assays Results: Using an optimized data analysis workflow, we mapped about 571.74 million sequence reads per sample to the the reference genome (ftp://ftp.ensemblgenomes.org/pub/release-38/plants/genbank/brassica_oleracea/) and identified 99, 391, 74, and 543 DEGs were detected in pairwise comparison (S2 vs. S1, S3_S vs. S2, S3_C vs. S2, and S3_S vs. S3_C, respectively). The DEGs were associated with ‘photosynthesis’and other pathways in the Kyoto Encyclopedia of Genes and Genomes database; DEGs related to chloroplast organization were identified in the Gene Ontology analysis. The DEGs identified by RNA sequencing were confirmed by qRT-PCR analysis, indicating that the data were reliable. These findings provide information that can be useful for investigating the molecular basis for leaf variegation in ornamental kale and other plants. Conclusions: The results presented here reveal changes in the transcriptome profile of a bicolor leaf kale. DEGs related to anthocyanin biosynthesis, chlorophyll metabolism and chloroplast organization were detected. These results demonstrate that leaf color at different stages of development is influenced by anthocyanin biosynthesis, chloroplast and pigment metabolism, providing a foundation for investigating the molecular basis for bicolor leaf in ornamental kale and other plants.
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of leaf color at different development stages. The goals of this study are to compare chlorophyll metabolism and chloroplast organization transcriptome profiling (RNA-seq) to microarray and quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods and to evaluate protocols for optimal high-throughput data analysis Methods: leaf mRNA profiles of 12 RNA sequencing libraries (S1, S2, S3_S, and S3_C) were generated by deep sequencing, in triplicate, using an Illumina HiSeq 4000 system. After removing reads of low quality, those that remained were mapped to the reference genome (ftp://ftp.ensemblgenomes.org/pub/release-38/plants/genbank/brassica_oleracea/) using the HISAT package, allowing for a maximum of two mismatches and multiple alignments per read (up to 20 by default). qRT–PCR validation was performed using SYBR Green assays Results: Using an optimized data analysis workflow, we mapped about 571.74 million sequence reads per sample to the the reference genome (ftp://ftp.ensemblgenomes.org/pub/release-38/plants/genbank/brassica_oleracea/) and identified 1028, 4323, 428, and 1033 DEGs were detected in pairwise comparison (S2 vs. S1, S3_S vs. S2, S3_S vs. S2, and S3_S vs. S3_C, respectively). The DEGs were associated with ‘photosynthesis’, ‘carbon fixation in photosynthetic organisms’, ‘porphyrin and chlorophyll metabolism’ and other pathways in the Kyoto Encyclopedia of Genes and Genomes database; DEGs related to chloroplast organization were identified in the Gene Ontology analysis. The DEGs identified by RNA sequencing were confirmed by qRT-PCR analysis, indicating that the data were reliable. These findings provide information that can be useful for investigating the molecular basis for leaf variegation in ornamental kale and other plants. Conclusions: The results presented here reveal changes in the transcriptome profile of a variegated leaf kale. DEGs related to chlorophyll metabolism and chloroplast organization were detected. These results demonstrate that leaf color at different stages of development is influenced by chloroplast and pigment metabolism, providing a foundation for investigating the molecular basis for leaf variegation in ornamental kale and other plants.
Project description:Various strategies of plant breeding have been attempted in order to improve the ethylene resistance of flowering ornamental plants. These approaches span from conventional techniques such as simple cross-pollination to new breeding techniques which modify the plants genetically such as precise genome-editing. The main strategies target the ethylene pathway directly; others focus on changing the ethylene pathway indirectly via pathways that are known to be antagonistic to the ethylene pathway, e.g. increasing cytokinin levels. Many of the known elements of the ethylene pathway have been addressed experimentally with the aim of modulating the overall response of the plant to ethylene. Elements of the ethylene pathway that appear particularly promising in this respect include ethylene receptors as ETR1, and transcription factors such as EIN3. Both direct and indirect approaches seem to be successful, nevertheless, although genetic transformation using recombinant DNA has the ability to save much time in the breeding process, they are not readily used by breeders yet. This is primarily due to legislative issues, economic issues, difficulties of implementing this technology in some ornamental plants, as well as how these techniques are publically perceived, particularly in Europe. Recently, newer and more precise genome-editing techniques have become available and they are already being implemented in some crops. New breeding techniques may help change the current situation and pave the way toward a legal and public acceptance if products of these technologies are indistinguishable from plants obtained by conventional techniques.