Project description:Advances in DNA sequencing technologies has drastically changed our perception of the structure and complexity of the plant microbiome. By comparison, our ability to accurately identify the metabolically active fraction of soil microbiota and its specific functional role in augmenting plant health is relatively limited. Here, we combined our recently developed protein extraction method and an iterative bioinformatics pipeline to enable the capture and identification of extracellular proteins (metaexoproteomics) synthesised in the rhizosphere of Brassica spp. We first validated our method in the laboratory by successfully identifying proteins related to a host plant (Brassica rapa) and its bacterial inoculant, Pseudomonas putida BIRD-1. This identified numerous rhizosphere specific proteins linked to the acquisition of plant-derived nutrients in P. putida. Next, we analysed natural field-soil microbial communities associated with Brassica napus L. (oilseed rape). By combining metagenomics with metaexoproteomics, 1882 proteins were identified across bulk and rhizosphere samples. Meta-exoproteomics identified a clear shift (p<0.001) in the metabolically active fraction of the soil microbiota responding to the presence of B. napus roots that was not apparent in the composition of the total microbial community (metagenome). This metabolic shift was associated with the stimulation of rhizosphere-specialised bacteria, such as Gammaproteobacteria, Betaproteobacteria and Flavobacteriia and the upregulation of plant beneficial functions related to phosphorus and nitrogen mineralisation. Together, our metaproteomic assessment of the ‘active’ plant microbiome at the field-scale demonstrates the importance of moving past a genomic assessment of the plant microbiome in order to determine ecologically important plant-microbe interactions underpinning plant health.
Project description:Advances in DNA sequencing technologies has drastically changed our perception of the structure and complexity of the plant microbiome. By comparison, our ability to accurately identify the metabolically active fraction of soil microbiota and its specific functional role in augmenting plant health is relatively limited. Here, we combined our recently developed protein extraction method and an iterative bioinformatics pipeline to enable the capture and identification of extracellular proteins (metaexoproteomics) synthesised in the rhizosphere of Brassica spp. We first validated our method in the laboratory by successfully identifying proteins related to a host plant (Brassica rapa) and its bacterial inoculant, Pseudomonas putida BIRD-1. This identified numerous rhizosphere specific proteins linked to the acquisition of plant-derived nutrients in P. putida. Next, we analysed natural field-soil microbial communities associated with Brassica napus L. (oilseed rape). By combining metagenomics with metaexoproteomics, 1882 proteins were identified across bulk and rhizosphere samples. Meta-exoproteomics identified a clear shift (p<0.001) in the metabolically active fraction of the soil microbiota responding to the presence of B. napus roots that was not apparent in the composition of the total microbial community (metagenome). This metabolic shift was associated with the stimulation of rhizosphere-specialised bacteria, such as Gammaproteobacteria, Betaproteobacteria and Flavobacteriia and the upregulation of plant beneficial functions related to phosphorus and nitrogen mineralisation. Together, our metaproteomic assessment of the ‘active’ plant microbiome at the field-scale demonstrates the importance of moving past a genomic assessment of the plant microbiome in order to determine ecologically important plant-microbe interactions underpinning plant health.
Project description:Advances in DNA sequencing technologies has drastically changed our perception of the structure and complexity of the plant microbiome. By comparison, our ability to accurately identify the metabolically active fraction of soil microbiota and its specific functional role in augmenting plant health is relatively limited. Here, we combined our recently developed protein extraction method and an iterative bioinformatics pipeline to enable the capture and identification of extracellular proteins (metaexoproteomics) synthesised in the rhizosphere of Brassica spp. We first validated our method in the laboratory by successfully identifying proteins related to a host plant (Brassica rapa) and its bacterial inoculant, Pseudomonas putida BIRD-1. This identified numerous rhizosphere specific proteins linked to the acquisition of plant-derived nutrients in P. putida. Next, we analysed natural field-soil microbial communities associated with Brassica napus L. (oilseed rape). By combining metagenomics with metaexoproteomics, 1882 proteins were identified across bulk and rhizosphere samples. Meta-exoproteomics identified a clear shift (p<0.001) in the metabolically active fraction of the soil microbiota responding to the presence of B. napus roots that was not apparent in the composition of the total microbial community (metagenome). This metabolic shift was associated with the stimulation of rhizosphere-specialised bacteria, such as Gammaproteobacteria, Betaproteobacteria and Flavobacteriia and the upregulation of plant beneficial functions related to phosphorus and nitrogen mineralisation. Together, our metaproteomic assessment of the ‘active’ plant microbiome at the field-scale demonstrates the importance of moving past a genomic assessment of the plant microbiome in order to determine ecologically important plant-microbe interactions underpinning plant health.
Project description:Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties, plant and microbial communities, in particular microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38-137% in response to either clipping or the combined treatment, which could weaken the long-term soil carbon stability and trigger a positive feedback to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization and denitrification by 32-39%. The potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium caused by clipping alone, and contribute to unchanged plant biomass. Moreover, clipping tended to interact antagonistically with warming, especially on nitrogen cycling genes, demonstrating that single factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties, as well as the abundance and structure of soil microbial functional genes. The aboveground biomass removal for biofuel production needs to be re-considered as the long-term soil carbon stability may be weakened.
Project description:Plants in their natural and agricultural environments are continuously exposed to a plethora of diverse microorganisms resulting in microbial colonization of plants in the rhizosphere. This process is believed to be accompanied by an intricate network of ongoing simultaneous interactions. In this study, we compared transcriptional patterns of Arabidopsis thaliana roots and shoots in the presence and absence of whole microbial communities extracted from compost soil. The results show a clear growth promoting effect of Arabidopsis shoots in the presence of soil microbes compared to axenically grown plants under identical conditions. Element analyses showed that iron uptake was facilitated by these mixed microbial communities which also lead to transcriptional downregulation of genes required for iron transport. In addition, soil microbial communities suppressed the expression of marker genes involved in oxidative stress/redox signalling, cell wall modification and plant defense. While most previous studies have focussed on individual plant-microbe interactions, our data suggest that multi-species transcriptional profiling, using simultaneous plant and metatranscriptomics coupled to metagenomics may be required to further increase our understanding of the intricate networks underlying plant-microbe interactions in their diverse environments.
Project description:This dataset contains raw files for metabolites collected from the soil and roots of four wetland plant species under non-sterile conditions, both in soil and hydroponically, during the day and night time periods.
Project description:Biological control is a promising approach to control diseases caused by Pythium species. Unusually for a single genus, the Pythium genus also includes species that can antagonise Pythium plant pathogens, such as Pythium oligandrum. These Pythium plant pathogens are commonly found in the soil such as the broad host-range pathogen Pythium myriotylum and cause various diseases of important crops. While P. oligandrum genes expressed in the interaction with oomycete plant pathogens have been identified previously, the transcriptional response of an oomycete plant pathogen to P. oligandrum has not been investigated. An isolate of P. oligandrum, GAQ1, recovered from soil could antagonise P. myriotylum in a plate-based confrontation assay. The P. oligandrum isolate had a strong disease control effect on soft-rot of ginger caused by P. myriotylum. We investigated the transcriptional interaction between P. myriotylum and P. oligandrum. As part of the transcriptional response of P. myriotylum to the presence of P. oligandrum, putative effector genes such as a sub-set of Kazal-type protease inhibitors were strongly upregulated. P. myriotylum cellulases and elicitin-like putative effectors were also upregulated. In P. oligandrum, cellulases, peroxidases, proteases and NLP effectors were upregulated. The transcriptional response of P. myriotylum suggests clear features of a counter-attacking strategy that may contribute to the variable success and durability of biological attempts to control diseases caused by Pythium species. Whether aspects of this counter-attack could inhibit aspects of this virulence of P. myriotylum is another interesting aspect for future studies.
Project description:Understanding the environmental factors that shape microbial communities is crucial, especially in extreme environments, like Antarctica. Two main forces were reported to influence Antarctic soil microbes: birds and plants. Both birds and plants are currently undergoing unprecedented changes in their distribution and abundance due to global warming. However, we need to clearly understand the relationship between plants, birds and soil microorganisms. We therefore collected rhizosphere and bulk soils from six different sampling sites subjected to different levels of bird influence and colonized by Colobanthus quitensis and Deschampsia antarctica in the Admiralty Bay, King George Island, Maritime Antarctic. Microarray and qPCR assays targeting 16S rRNA genes of specific taxa were used to assess microbial community structure, composition and abundance and analyzed with a range of soil physico-chemical parameters. The results indicated significant rhizosphere effects in four out of the six sites, including areas with different levels of bird influence. Acidobacteria were significantly more abundant in soils with little bird influence (low nitrogen) and in bulk soil. In contrast, Actinobacteria were significantly more abundant in the rhizosphere of both plant species. At two of the sampling sites under strong bird influence (penguin colonies), Firmicutes were significantly more abundant in D. antarctica rhizosphere but not in C. quitensis rhizosphere. The Firmicutes were also positively and significantly correlated to the nitrogen concentrations in the soil. We conclude that the microbial communities in Antarctic soils are driven both by bird and plants, and that the effect is taxa-specific.
Project description:Methyl jasmonate (MeJA) is a well-known plant hormone known for plant defense and plant-plant signaling. However, most of the studies are focussed on its aboveground presence and functions. Here we report that MeJA is also released by plant roots in a volatile form. More importantly, it is shown in Arabidopsis growing in natural conditions in soil.
Project description:Plants in their natural and agricultural environments are continuously exposed to a plethora of diverse microorganisms resulting in microbial colonization of plants in the rhizosphere. This process is believed to be accompanied by an intricate network of ongoing simultaneous interactions. In this study, we compared transcriptional patterns of Arabidopsis thaliana roots and shoots in the presence and absence of whole microbial communities extracted from compost soil. The results show a clear growth promoting effect of Arabidopsis shoots in the presence of soil microbes compared to axenically grown plants under identical conditions. Element analyses showed that iron uptake was facilitated by these mixed microbial communities which also lead to transcriptional downregulation of genes required for iron transport. In addition, soil microbial communities suppressed the expression of marker genes involved in oxidative stress/redox signalling, cell wall modification and plant defense. While most previous studies have focussed on individual plant-microbe interactions, our data suggest that multi-species transcriptional profiling, using simultaneous plant and metatranscriptomics coupled to metagenomics may be required to further increase our understanding of the intricate networks underlying plant-microbe interactions in their diverse environments. Four samples were analysed in total. One corresponded to a pooled sample of RNA extracted from root tissues of 60 plants. The other three were biological replicates from shoot tissues, each of which contained 20 plants. Controls were used as reference and corresponded to tissues of plants grown in sterile conditions.