Project description:Antimicrobial resistance is a serious threat to global public health, but little is known about the effects of microbial control on the microbiota and its associated resistome. Here we compare the microbiota present on surfaces of clinical settings with other built environments. Using state-of-the-art metagenomics approaches and genome and plasmid reconstruction, we show that increased confinement and cleaning is associated with a loss of microbial diversity and a shift from Gram-positive bacteria, such as Actinobacteria and Firmicutes, to Gram-negative such as Proteobacteria. Moreover, the microbiome of highly maintained built environments has a different resistome when compared to other built environments, as well as a higher diversity in resistance genes. Our results highlight that the loss of microbial diversity correlates with an increase in resistance, and the need for implementing strategies to restore bacterial diversity in certain built environments.
Project description:The review of geochronological and historical data documents that the largest southern European deltas formed almost synchronously during two short intervals of enhanced anthropic pressure on landscapes, respectively during the Roman Empire and the Little Ice Age. These growth phases, that occurred under contrasting climatic regimes, were both followed by generalized delta retreat, driven by two markedly different reasons: after the Romans, the fall of the population and new afforestation let soil erosion in river catchments return to natural background levels; since the industrial revolution, instead, flow regulation through river dams overkill a still increasing sediment production in catchment basins. In this second case, furthermore, the effect of a reduced sediment flux to the coasts is amplified by the sinking of modern deltas, due to land subsidence and sea level rise, that hampers delta outbuilding and increases the vulnerability of coastal zone to marine erosion and flooding.
Project description:Spontaneous vegetable fermentations, with their rich flavors and postulated health benefits, are regaining popularity. However, their microbiology is still poorly understood, therefore raising concerns about food safety. In addition, such spontaneous fermentations form interesting cases of man-made microbial ecosystems. Here, samples from 38 carrot juice fermentations were collected through a citizen science initiative, in addition to three laboratory fermentations. Culturing showed that Enterobacteriaceae were outcompeted by lactic acid bacteria (LAB) between 3 and 13 days of fermentation. Metabolite-target analysis showed that lactic acid and mannitol were highly produced, as well as the biogenic amine cadaverine. High-throughput 16S rRNA gene sequencing revealed that mainly species of Leuconostoc and Lactobacillus (as identified by 8 and 20 amplicon sequence variants [ASVs], respectively) mediated the fermentations in subsequent order. The analyses at the DNA level still detected a high number of Enterobacteriaceae, but their relative abundance was low when RNA-based sequencing was performed to detect presumptive metabolically active bacterial cells. In addition, this method greatly reduced host read contamination. Phylogenetic placement indicated a high LAB diversity, with ASVs from nine different phylogenetic groups of the Lactobacillus genus complex. However, fermentation experiments with isolates showed that only strains belonging to the most prevalent phylogenetic groups preserved the fermentation dynamics. The carrot juice fermentation thus forms a robust man-made microbial ecosystem suitable for studies on LAB diversity and niche specificity.IMPORTANCE The usage of fermented food products by professional chefs is steadily growing worldwide. Meanwhile, this interest has also increased at the household level. However, many of these artisanal food products remain understudied. Here, an extensive microbial analysis was performed of spontaneous fermented carrot juices which are used as nonalcoholic alternatives for wine in a Belgian Michelin star restaurant. Samples were collected through an active citizen science approach with 38 participants, in addition to three laboratory fermentations. Identification of the main microbial players revealed that mainly species of Leuconostoc and Lactobacillus mediated the fermentations in subsequent order. In addition, a high diversity of lactic acid bacteria was found; however, fermentation experiments with isolates showed that only strains belonging to the most prevalent lactic acid bacteria preserved the fermentation dynamics. Finally, this study showed that the usage of RNA-based 16S rRNA amplicon sequencing greatly reduces host read contamination.
Project description:Natural and engineered water systems are the main sources of Legionnaires' disease. It is essential from a public health perspective to survey water environments for the existence of Legionella. To analyze the main serogroups, genotypes and pathogenicity of the pathogen, a stratified sampling method was adopted to collect water samples randomly from shower water, cooling tower water, and local public hot springs in Wenzhou, China. Suspected strains were isolated from concentrated water samples. Serum agglutination assay and real-time PCR (Polymerase chain reaction) were used to identify L. pneumophila. Sequence-based typing (SBT) and pulsed-field gel electrophoresis (PFGE) were used to elucidate the genetic polymorphisms in the collected isolates. The intracellular growth ability of the isolates was determined through their interaction with J774 cells and plating them onto BCYE (Buffered Charcoal Yeast Extract) agar plates. Overall, 25.56% (46/180) of water samples were Legionella-positive; fifty-two strains were isolated and two kinds of serogroups were co-detected from six water samples from 2015 to 2016. Bacterial concentrations ranged from 20 CFU/100 mL to 10,720 CFU/100 mL. In detail, the Legionella-positive rates of shower water, cooling tower water and hot springs water were 15.45%, 13.33%, and 62.5%, respectively. The main serogroups were LP1 (30.69%) and LP3 (28.85%) and all strains carried the dot gene. Among them, 52 isolates and another 10 former isolates were analyzed by PFGE. Nineteen distinct patterns were observed in 52 strains isolated from 2015 to 2016 with three patterns being observed in 10 strains isolated from 2009 to 2014. Seventy-three strains containing 52 from this study and 21 former isolates were selected for SBT analysis and divided into 25 different sequence types in 4 main clonal groups belonging to 4 homomorphic types. Ten strains were chosen to show their abilities to grow and multiply in J744 cells. Taken together, our results demonstrate a high prevalence and genetic polymorphism of Legionella in Wenzhou's environmental water system. The investigated environmental water sources pose a potential threat to the public where intervention could help to prevent the occurrence of Legionnaires' disease.
Project description:Though established 40 years ago, the field of de novo protein design has recently come of age, with new designs exhibiting an unprecedented level of sophistication in structure and function. With respect to catalysis, de novo enzymes promise to revolutionise the industrial production of useful chemicals and materials, while providing new biomolecules as plug-and-play components in the metabolic pathways of living cells. To this end, there are now de novo metalloenzymes that are assembled in vivo, including the recently reported C45 maquette, which can catalyse a variety of substrate oxidations with efficiencies rivalling those of closely related natural enzymes. Here we explore the successful design of this de novo enzyme, which was designed to minimise the undesirable complexity of natural proteins using a minimalistic bottom-up approach.
| S-EPMC6227378 | biostudies-literature
Project description:Metagenome in built environments from Xiamen
Project description:Plants in their natural and agricultural environments are continuously exposed to a plethora of diverse microorganisms resulting in microbial colonization of plants in the rhizosphere. This process is believed to be accompanied by an intricate network of ongoing simultaneous interactions. In this study, we compared transcriptional patterns of Arabidopsis thaliana roots and shoots in the presence and absence of whole microbial communities extracted from compost soil. The results show a clear growth promoting effect of Arabidopsis shoots in the presence of soil microbes compared to axenically grown plants under identical conditions. Element analyses showed that iron uptake was facilitated by these mixed microbial communities which also lead to transcriptional downregulation of genes required for iron transport. In addition, soil microbial communities suppressed the expression of marker genes involved in oxidative stress/redox signalling, cell wall modification and plant defense. While most previous studies have focussed on individual plant-microbe interactions, our data suggest that multi-species transcriptional profiling, using simultaneous plant and metatranscriptomics coupled to metagenomics may be required to further increase our understanding of the intricate networks underlying plant-microbe interactions in their diverse environments. Four samples were analysed in total. One corresponded to a pooled sample of RNA extracted from root tissues of 60 plants. The other three were biological replicates from shoot tissues, each of which contained 20 plants. Controls were used as reference and corresponded to tissues of plants grown in sterile conditions.
Project description:Plants in their natural and agricultural environments are continuously exposed to a plethora of diverse microorganisms resulting in microbial colonization of plants in the rhizosphere. This process is believed to be accompanied by an intricate network of ongoing simultaneous interactions. In this study, we compared transcriptional patterns of Arabidopsis thaliana roots and shoots in the presence and absence of whole microbial communities extracted from compost soil. The results show a clear growth promoting effect of Arabidopsis shoots in the presence of soil microbes compared to axenically grown plants under identical conditions. Element analyses showed that iron uptake was facilitated by these mixed microbial communities which also lead to transcriptional downregulation of genes required for iron transport. In addition, soil microbial communities suppressed the expression of marker genes involved in oxidative stress/redox signalling, cell wall modification and plant defense. While most previous studies have focussed on individual plant-microbe interactions, our data suggest that multi-species transcriptional profiling, using simultaneous plant and metatranscriptomics coupled to metagenomics may be required to further increase our understanding of the intricate networks underlying plant-microbe interactions in their diverse environments.
Project description:Here, we applied a microarray-based metagenomics technology termed GeoChip 5.0 to examined functional gene structure of microbes in three biomes, including boreal, temperate and tropical area.
Project description:Ambiguous images are widely recognized as a valuable tool for probing human perception. Perceptual biases that arise when people make judgements about ambiguous images reveal their expectations about the environment. While perceptual biases in early visual processing have been well established, their existence in higher-level vision has been explored only for faces, which may be processed differently from other objects. Here we developed a new, highly versatile method of creating ambiguous hybrid images comprising two component objects belonging to distinct categories. We used these hybrids to measure perceptual biases in object classification and found that images of man-made (manufactured) objects dominated those of naturally occurring (non-man-made) ones in hybrids. This dominance generalized to a broad range of object categories, persisted when the horizontal and vertical elements that dominate man-made objects were removed and increased with the real-world size of the manufactured object. Our findings show for the first time that people have perceptual biases to see man-made objects and suggest that extended exposure to manufactured environments in our urban-living participants has changed the way that they see the world.