Project description:Four stable and robust TCE-dechlorinating microbial communities were enriched from TCE-contaminated groundwater under four different conditions exploring two parameters, high and low methanogenic activity (Meth and NoMeth), with and without vitamin B12 supplement (MethB12 and NoMethB12, Meth and NoMeth, respectively). Identical amounts of lactate (2.7 mmol) and TCE (20 μl) were supplied as electron donor and electron acceptor. All four cultures were capable of reductively dechlorinating TCE to VC and ethene. Genomic DNA of the four enrichments was applied on a quad-Dhc-genome microarray in order to characterize the gene content of Dehalococcoides species present in the four enrichments
Project description:Four stable and robust TCE-dechlorinating microbial communities were enriched from TCE-contaminated groundwater under four different conditions exploring two parameters, high and low methanogenic activity (Meth and NoMeth), with and without vitamin B12 supplement (MethB12 and NoMethB12, Meth and NoMeth, respectively). Identical amounts of lactate (2.7 mmol) and TCE (20 M-NM-<l) were supplied as electron donor and electron acceptor. All four cultures were capable of reductively dechlorinating TCE to VC and ethene. Genomic DNA of the four enrichments was applied on a quad-Dhc-genome microarray in order to characterize the gene content of Dehalococcoides species present in the four enrichments The genomic DNA of four enrichment cultures completely dechlorinated TCE to VC and ethene was used on the microarray to query Dehalococcoides species present in the mixed cultures.
Project description:The aim of this study is to obtain a systems level understanding of the interactions between Dehalococcoides and corrinoid-supplying microorganisms by analyzing community structures and functional compositions, activities and dynamics in trichloroethene (TCE)-dechlorinating enrichments. Metagenomes and metatranscriptomes of the dechlorinating enrichments with and without exogenous cobalamin were compared. Seven draft genomes were binned from the metagenomes. At an early stage (2 d), more transcripts of genes in the Veillonellaceae bin-genome were detected in the metatranscriptome of the enrichment with exogenous cobalamin compared to the one without cobalamin addition. Among these genes, sporulation-related genes exhibited the highest differential expression when cobalamin was not added, suggesting a possible release route of corrinoids from corrinoid-producers. Other differentially expressed genes include those involved in energy conservation and nutrient transport (including cobalt transport). The most highly expressed corrinoid de novo biosynthesis pathway was also assigned to the Veillonellaceae bin-genome. Targeted qPCR analyses confirmed higher transcript abundances of those corrinoid biosynthesis genes in the enrichment without exogenous cobalamin. Furthermore, Dehalococcoides' corrinoid salvaging and modification pathway was upregulated in response to the cobalamin stress. This study provides important insights into the microbial interactions and roles of members of dechlorinating communities under cobalamin-limited conditions.
Project description:To investigate the important supportive microorganisms responsible for trichloroethene (TCE) bioremediation under specific environmental conditions and their relationship with Dehalococcoides (Dhc), four stable and robust enrichment cultures were generated using contaminated groundwater. Enrichments were maintained under four different conditions exploring two parameters: high and low TCE amendments (resulting in inhibited and uninhibited methanogenic activity, respectively) and with and without vitamin B?? amendment. Lactate was supplied as the electron donor. All enrichments were capable of reductively dechlorinating TCE to vinyl chloride and ethene. The dechlorination rate and ethene generation were higher, and the proportion of electrons used for dechlorination increased when methanogenesis was inhibited. Biologically significant cobalamin biosynthesis was detected in the enrichments without B?? amendment. Comparative genomics using a genus-wide microarray revealed a Dhc genome similar to that of strain 195 in all enrichments, a strain that lacks the major upstream corrin ring biosynthesis pathway. Seven other bacterial operational taxonomic units (OTUs) were detected using clone libraries. OTUs closest to Pelosinus, Dendrosporobacter, and Sporotalea (PDS) were most dominant. The Clostridium-like OTU was most affected by B?? amendment and active methanogenesis. Principal component analysis revealed that active methanogenesis, rather than vitamin B?? limitation, exerted a greater effect on the community structures even though methanogens did not seem to play an essential role in providing corrinoids to Dhc. In contrast, acetogenic bacteria that were abundant in the enrichments, such as PDS and Clostridium sp., may be potential corrinoid providers for Dhc.