Project description:To comprehensively profile cell types in the human retina, we performed single cell RNA-sequencing on 20,009 cells obtained post-mortem from three donors and compiled a reference transcriptome atlas. Using unsupervised clustering analysis, we identified 18 transcriptionally distinct clusters representing all known retinal cells: rod photoreceptors, cone photoreceptors, Müller glia cells, bipolar cells, amacrine cells, retinal ganglion cells, horizontal cells, retinal astrocytes and microglia.
Project description:Otx2 has been shown to be non cell autonomously required for photoreceptor cell survival in the adult mouse RPE. This study aims to identify Otx2 DNA binding profile in both RPE and neural retina to i) identify direct targets of Otx2 in the RPE ii) compare Otx2 binding profile in neural retina and RPE to unveil hidden functions in the neural retina. WT and GFP antibodies were used to perform two independent ChIP-seq experiments using Illumina GAIIx.
Project description:Otx2 has been shown to be non cell autonomously required for photoreceptor cell survival in the adult mouse RPE. This study aims to identify Otx2 DNA binding profile in both RPE and neural retina to i) identify direct targets of Otx2 in the RPE ii) compare Otx2 binding profile in neural retina and RPE to unveil hidden functions in the neural retina.
Project description:The human neural retina is enriched for alternative splicing, and it is estimated that more than 10% of variants associated with inherited retinal diseases (IRDs) alter splicing. Previous research mainly used short-read RNA-sequencing techniques to investigate retina-specific splicing and splicing factors. However, this technique provides limited information about transcript isoforms. To gain a deeper understanding of the human neural retina and its isoforms, we generated a proteogenomic atlas that combined PacBio long-read RNA-sequencing data with mass-spectrometry and whole-genome sequencing data from three healthy human neural retina samples. RNA-sequencing revealed that one-third of all transcripts were novel, and for IRD-associated genes, even 43% were novel. The most common novel elements of these transcripts were alternative poly(A) sites, exon elongation, and intron retention. Some novel elements affect the non-coding region but for more than 50% of the novel transcripts a novel open reading frame was predicted. Using proteomics, ten novel peptides confirmed novel isoforms in five genes. Additionally, we found novel isoforms of IMPDH1, an IRD-associated gene, with supporting peptide evidence. This study provides a comprehensive overview of the transcript and protein isoforms expressed in the healthy human neural retina. Moreover, it highlights the importance of studying tissue specific transcriptomes in greater detail to better understand tissue-specific regulation and to identify disease-causing variants.
Project description:In this study, we have pooled 3 adult wild-type Zebrafish retinas and performed Single-Cell RNA Sequencing. We would like to see the transcriptomic signatures of each cell type in the retina. The data provided here will provide a foundation for other studies to further investigate the transcriptomic retinal enviromnent and compare how their models differ from WT.
Project description:Retinal RNA profiles from macula and periphery of each eye were generated by single-cell sequencing. M11-M14 are macula retina and P11-P14 are peripheral retina from the same 78 year old donor. M21-M24 are macula retina and P21-P24 are peripheral retina from the same 90-year-old donor.
Project description:Cell types in the human retina are highly heterogeneous with their abundance varies by several orders of magnitude. To decipher the complexity of gene expression and regulation of the human retinal cell types, we generated a multi-omics single-cell atlas of the adult human retina, including over 250K nuclei for single-nuclei RNA-seq and 150K nuclei for single-nuclei ATAC-seq. Over 60 cell subtypes have been identified based on their transcriptomic profiles, reaching a sensitivity of 0.01%. Integrative analysis of this single-cell multi-omics dataset identified gene regulatory elements across the genome for each cell subtype. In addition, when combined with other data modalities, such as eQTL, potential causal variants can be identified through fine mapping. Taken together, this new dataset represents the most comprehensive single-cell multi-omics profiling for the human retina that enables in-depth molecular characterization of most cell subtypes.
Project description:As an ancient jawless vertebrate species, the lamprey offers an important model to probe the evolutionary history of retinal cells. In this study, we generated a cell atlas of the adult sea lamprey retina using single-cell RNA sequencing