Project description:Non-typeable Haemophilus influenzae (NTHi) is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth) stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10M-BM-5g/mL) of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended. 12 samples
Project description:Non-typeable Haemophilus influenzae (NTHi) is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth) stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10µg/mL) of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended.
Project description:It has been reported that treatment with β-lactam antibiotics induces leukopenia and candidemia, worsens the clinical response to anticancer immunotherapy and decreases immune response to vaccination. β-lactamases can cleave β-lactam antibiotics by blocking their activity. Two distincts superfamilies of β-lactamases are described, the serine β-lactamases and the zinc ion dependent metallo-β-lactamases. In human, 18 metallo-β-lactamases encoding genes (hMBLs) have been identified. While the physiological role of most of them remains unknown, it is well established that the SNM1A, B and C proteins are involved in DNA repair. The SNM1C/Artemis protein is precisely associated in the V(D)J segments rearrangement, that leads to immunoglobulin (Ig) and T-cell receptor variable regions, which have a crucial role in the immune response. Thus in humans, SNM1C/Artemis mutation is associated with severe combined immunodeficiency characterized by hypogammaglobulinemia deficient cellular immunity and opportunistic infections. While catalytic site of hMBLs and especially that of the SNM1 family is highly conserved, in vitro studies showed that some β-lactam antibiotics, and precisely third generation of cephalosporin and ampicillin, inhibit the metallo-β-lactamase proteins SNM1A & B and the SNM1C/Artemis protein complex. By analogy, the question arises as to whether β-lactam antibiotics can block the SNM1C/Artemis protein in humans inducing transient immunodeficiency. We reviewed here the literature data supporting this hypothesis based on in silico, in vitro and in vivo evidences. Understanding the impact of β-lactam antibiotics on the immune cell will offer new therapeutic clues and new clinical approaches in oncology, immunology, and infectious diseases.
Project description:The bacterial cell wall is conserved in prokaryotes, stabilizing cells against osmotic stress. Beta-lactams inhibit cell-wall synthesis and induce lysis through a bulge-mediated mechanism; however, little is known about the formation dynamics and stability of these bulges. To capture processes of different timescales, we developed an imaging platform combining automated image analysis with live-cell microscopy at high time resolution. Beta-lactam killing of Escherichia coli cells proceeded through four stages: elongation, bulge formation, bulge stagnation, and lysis. Both the cell wall and outer membrane (OM) affect the observed dynamics; damaging the cell wall with different beta-lactams and compromising OM integrity cause different modes and rates of lysis. Our results show that the bulge-formation dynamics are determined by how the cell wall is perturbed. The OM plays an independent role in stabilizing the bulge once it is formed. The stabilized bulge delays lysis and allows recovery upon drug removal.
Project description:It has been proposed that family VIII carboxylesterases and class C β-lactamases are phylogenetically related; however, none of carboxylesterases has been reported to hydrolyze β-lactam antibiotics except nitrocefin, a nonclinical chromogenic substrate. Here, we describe the first example of a novel carboxylesterase derived from a metagenome that is able to cleave the amide bond of various β-lactam substrates and the ester bond of p-nitrophenyl esters. A clone with lipolytic activity was selected by functional screening of a metagenomic library using tributyrin agar plates. The sequence analysis of the clone revealed the presence of an open reading frame (estU1) encoding a polypeptide of 426 amino acids, retaining an S-X-X-K motif that is conserved in class C β-lactamases and family VIII carboxylesterases. The gene was overexpressed in Escherichia coli, and the purified recombinant protein (EstU1) was further characterized. EstU1 showed esterase activity toward various chromogenic p-nitrophenyl esters. In addition, it exhibited hydrolytic activity toward nitrocefin, leading us to investigate whether EstU1 could hydrolyze β-lactam antibiotics. EstU1 was able to hydrolyze first-generation β-lactam antibiotics, such as cephalosporins, cephaloridine, cephalothin, and cefazolin. In a kinetic study, EstU1 showed a similar range of substrate affinities for both p-nitrophenyl butyrate and first-generation cephalosporins while the turnover efficiency for the latter was much lower. Furthermore, site-directed mutagenesis studies revealed that the catalytic triad of EstU1 plays a crucial role in hydrolyzing both ester bonds of p-nitrophenyl esters and amide bonds of the β-lactam ring of antibiotics, implicating the predicted catalytic triad of EstU1 in both activities.
Project description:Antibiotic use is a risk factor for development of inflammatory bowel diseases (IBDs). IBDs are characterized by a damaged mucus layer, which does not properly separate the host intestinal epithelium from the microbiota. Here, we hypothesized that antibiotics might affect the integrity of the mucus barrier. By systematically determining the effects of different antibiotics on mucus layer penetrability we found that oral antibiotic treatment led to breakdown of the mucus barrier and penetration of bacteria into the mucus layer. Using fecal microbiota transplant, RNA sequencing followed by machine learning and ex vivo mucus secretion measurements, we determined that antibiotic treatment induces ER stress and inhibits colonic mucus secretion in a microbiota-independent manner. This mucus secretion flaw led to penetration of bacteria into the colonic mucus layer, translocation of microbial antigens into circulation and exacerbation of ulcerations in a mouse model of IBD. Thus, antibiotic use might predispose to development of intestinal inflammation by impeding mucus production.
Project description:Antibiotic use is a risk factor for development of inflammatory bowel diseases (IBDs). IBDs are characterized by a damaged mucus layer, which does not properly separate the host intestinal epithelium from the microbiota. Here, we hypothesized that antibiotics might affect the integrity of the mucus barrier. By systematically determining the effects of different antibiotics on mucus layer penetrability we found that oral antibiotic treatment led to breakdown of the mucus barrier and penetration of bacteria into the mucus layer. Using fecal microbiota transplant, RNA sequencing followed by machine learning and ex vivo mucus secretion measurements, we determined that antibiotic treatment induces ER stress and inhibits colonic mucus secretion in a microbiota-independent manner. This mucus secretion flaw led to penetration of bacteria into the colonic mucus layer, translocation of microbial antigens into circulation and exacerbation of ulcerations in a mouse model of IBD. Thus, antibiotic use might predispose to development of intestinal inflammation by impeding mucus production.
Project description:The Staphylococcus aureus small-colony variant (SCV) phenotype has been associated with relapsing and antibiotic-refractory infections. However, little is known about the activities of antibiotics on clinical SCVs. Here, we demonstrated that SCVs without detectable auxotrophies were at least as susceptible to most β-lactam and non-β-lactam antibiotics in vitro as their corresponding clonally identical strains with a normal phenotype. After prolonged incubation, a regrowth phenomenon has been observed in gradient diffusion inhibition zones irrespective of the strains' phenotype.
Project description:Peptidoglycan is predominantly cross-linked by serine DD-transpeptidases in most bacterial species. The enzymes are the essential targets of ?-lactam antibiotics. However, unrelated cysteine LD-transpeptidases have been recently recognized as a predominant mode of peptidoglycan cross-linking in Mycobacterium tuberculosis and as a bypass mechanism conferring resistance to all ?-lactams, except carbapenems such as imipenem, in Enterococcus faecium. Investigation of the mechanism of inhibition of this new ?-lactam target showed that acylation of the E. faecium enzyme (Ldt(fm)) by imipenem is irreversible. Using fluorescence kinetics, an original approach was developed to independently determine the catalytic constants for imipenem binding (k(1) = 0.061 ?M(-1) min(-1)) and acylation (k(inact) = 4.5 min(-1)). The binding step was limiting at the minimal drug concentration required for bacterial growth inhibition. The Michaelis complex was committed to acylation because its dissociation was negligible. The emergence of imipenem resistance involved substitutions in Ldt(fm) that reduced the rate of formation of the non-covalent complex but only marginally affected the efficiency of the acylation step. The methods described in this study will facilitate development of new carbapenems active on extensively resistant M. tuberculosis.
Project description:Evolutionary adaptation is a major source of antibiotic resistance in bacterial pathogens. Evolution-informed therapy aims to constrain resistance by accounting for bacterial evolvability. Sequential treatments with antibiotics that target different bacterial processes were previously shown to limit adaptation through genetic resistance trade-offs and negative hysteresis. Treatment with homogeneous sets of antibiotics is generally viewed to be disadvantageous as it should rapidly lead to cross-resistance. We here challenged this assumption by determining the evolutionary response of Pseudomonas aeruginosa to experimental sequential treatments involving both heterogenous and homogeneous antibiotic sets. To our surprise, we found that fast switching between only β-lactam antibiotics resulted in increased extinction of bacterial populations. We demonstrate that extinction is favored by low rates of spontaneous resistance emergence and low levels of spontaneous cross-resistance among the antibiotics in sequence. The uncovered principles may help to guide the optimized use of available antibiotics in highly potent, evolution-informed treatment designs.