Project description:This set of arrays contains all microarray experiments done involving comparisons among C. elegans natural isolates and mutation-accumulation lines. Abstract: The evolutionary importance of gene-expression divergence is unclear: some studies suggest that it is an important mechanism for evolution by natural selection, whereas others claim that most between-species regulatory changes are neutral or nearly neutral. We examined global transcriptional divergence patterns in a set of Caenorhabditis elegans mutation-accumulation lines and natural isolate lines to provide insights into the evolutionary importance of transcriptional variation and to discriminate between the forces of mutation and natural selection in shaping the evolution of gene expression. We detected the effects of selection on transcriptional divergence patterns and characterized them with respect to coexpressed gene sets, chromosomal clustering of expression changes and functional gene categories. We directly compared observed transcriptional variation patterns in the mutation-accumulation and natural isolate lines to a neutral model of transcriptome evolution to show that strong stabilizing selection dominates the evolution of transcriptional change for thousands of C. elegans expressed sequences. An all pairs experiment design type is where all labeled extracts are compared to every other labeled extract. Keywords: all_pairs
Project description:This set of arrays contains all microarray experiments done involving comparisons among C. elegans natural isolates and mutation-accumulation lines. Abstract: The evolutionary importance of gene-expression divergence is unclear: some studies suggest that it is an important mechanism for evolution by natural selection, whereas others claim that most between-species regulatory changes are neutral or nearly neutral. We examined global transcriptional divergence patterns in a set of Caenorhabditis elegans mutation-accumulation lines and natural isolate lines to provide insights into the evolutionary importance of transcriptional variation and to discriminate between the forces of mutation and natural selection in shaping the evolution of gene expression. We detected the effects of selection on transcriptional divergence patterns and characterized them with respect to coexpressed gene sets, chromosomal clustering of expression changes and functional gene categories. We directly compared observed transcriptional variation patterns in the mutation-accumulation and natural isolate lines to a neutral model of transcriptome evolution to show that strong stabilizing selection dominates the evolution of transcriptional change for thousands of C. elegans expressed sequences. An all pairs experiment design type is where all labeled extracts are compared to every other labeled extract. Computed
Project description:In Arabidopsis thaliana a high rate of spontaneous epigenetic variation can occur in the DNA methylome in the absence of genetic variation and selection. It has been of great interest, whether natural epigenetic variation is subject to selection and contributes to fitness and adaptation in selective environments. We compared the variation in selected phenotypic traits, genome-wide cytosine DNA methylation and gene expression in two Arabidopsis recombinant inbred lines, which had undergone five generations of selection in experimental landscapes relative to their genetically identical ancestors. Selected populations exerted significant differences in flowering time and the number of branches and fruits, differences that were maintained over two to three generations in the absence of selection. We identified 4,629 and 5,158 differentially methylated cytosines which were overrepresented in genes that regulate flowering time, epigenetic processes, development and morphogenesis. Differentially methylated genes were enriched in differentially expressed genes. Thus, epigenetic variation is subject to selection and may play an important role in the adaptive response of populations in rapidly changing natural environments.
Project description:Natural genetic variation between two mouse strains was used as a natural mutagenesis screen to test various aspects of the proposed model for enhancer selection and function.
Project description:In Arabidopsis thaliana a high rate of spontaneous epigenetic variation can occur in the DNA methylome in the absence of genetic variation and selection. It has been of great interest, whether natural epigenetic variation is subject to selection and contributes to fitness and adaptation in selective environments. We compared the variation in selected phenotypic traits, genome-wide cytosine DNA methylation and gene expression in two Arabidopsis recombinant inbred lines, which had undergone five generations of selection in experimental landscapes relative to their genetically identical ancestors. Selected populations exerted significant differences in flowering time and the number of branches and fruits, differences that were maintained over two to three generations in the absence of selection. We identified 4,629 and 5,158 differentially methylated cytosines which were overrepresented in genes that regulate flowering time, epigenetic processes, development and morphogenesis. Differentially methylated genes were enriched in differentially expressed genes. Thus, epigenetic variation is subject to selection and may play an important role in the adaptive response of populations in rapidly changing natural environments.
Project description:In Arabidopsis thaliana a high rate of spontaneous epigenetic variation can occur in the DNA methylome in the absence of genetic variation and selection. It has been of great interest, whether natural epigenetic variation is subject to selection and contributes to fitness and adaptation in selective environments. We compared the variation in selected phenotypic traits, genome-wide cytosine DNA methylation and gene expression in two Arabidopsis recombinant inbred lines, which had undergone five generations of selection in experimental landscapes relative to their genetically identical ancestors. Selected populations exerted significant differences in flowering time and the number of branches and fruits, differences that were maintained over two to three generations in the absence of selection. We identified 4,629 and 5,158 differentially methylated cytosines which were overrepresented in genes that regulate flowering time, epigenetic processes, development and morphogenesis. Differentially methylated genes were enriched in differentially expressed genes. Thus, epigenetic variation is subject to selection and may play an important role in the adaptive response of populations in rapidly changing natural environments.
Project description:Outbred D.melanogaster populations subjected to >300 generations of natural selection on either control, or 12% ethanol, or variable food (2 replicates each) and exposed, as first instar larvae, to either water control or 12% ethanol.