Project description:The success of social insects is largely intertwined with their highly advanced chemical communication system that facilitates recognition and discrimination of species and nest-mates, recruitment, and division of labor. Hydrocarbons, which cover the cuticle of insects, not only serve as waterproofing agents but also constitute a major component of this communication system. Two cryptic Crematogaster species, which share their nest with Camponotus ants, show striking diversity in their cuticular hydrocarbon (CHC) profile. This mutualistic system therefore offers a great opportunity to study the genetic basis of CHC divergence between sister species. As a basis for further genome-wide studies high-quality genomes are needed. Here, we present the annotated draft genome for Crematogaster levior A. By combining the three most commonly used sequencing techniques-Illumina, PacBio, and Oxford Nanopore-we constructed a high-quality de novo ant genome. We show that even low coverage of long reads can add significantly to overall genome contiguity. Annotation of desaturase and elongase genes, which play a role in CHC biosynthesis revealed one of the largest repertoires in ants and a higher number of desaturases in general than in other Hymenoptera. This may provide a mechanistic explanation for the high diversity observed in C. levior CHC profiles.
Project description:Trans-generational immunization is defined as the transmission of an enhanced resistance to a pathogen from parents to offspring. By using the host-parasite system of the ant Crematogaster scutellaris and the entomopathogenic fungus Metarhizium anisopliae, we describe this phenomenon for the first time in ants. We exposed four groups of hibernating queens to different treatments (i) a non-lethal dose of live conidiospores in Triton, (ii) a dose of heat-killed conidiospores in Triton, (iii) a control Triton solution, and (iv) a naive control. We exposed their first workers to a high dose of conidiospores and measured mortality rates. Workers produced by queens exposed to live conidiospores survived longer than those belonging to the other groups, while exposure to Triton and dead spores had no effect. Starved workers showed a significantly higher mortality. The treatments did not influence queen mortality, nor the number of offspring they produced at the emergence of the first worker, showing no evidence of immunization costs-at least for these parameters in the first year of colony development. We propose that trans-generational immunization represents an important component of social immunity that could affect colony success, particularly during the critical phase of claustral foundation.
Project description:The genus Crematogaster is a diverse group of ants found around the world. We have completed the mitochondrial genome of Crematogaster teranishii, which is the first mitochondrial genome of the genus. The mitochondrial genome is 17,442 bp long and 20.3% in GC ratio, which is similar to those of other ants. It contains 13 protein-coding genes, two ribosomal RNAs, 22 transfer RNAs, and a control region with same gene order to other myrmicine species. The intergenic region between nad3 and trnA was unusually long compared to other ant species. Phylogenetic analysis showed that C. teranishii was closely related to other members of tribe Crematogastrini.
Project description:Formica red wood ants are a keystone species of boreal forest ecosystems and an emerging model system in the study of speciation and hybridization. Here, we performed a standard DNA extraction from a single, field-collected Formica aquilonia × Formica polyctena haploid male and assembled its genome using ~60× of PacBio long reads. After polishing and contaminant removal, the final assembly was 272 Mb (4687 contigs, N50 = 1.16 Mb). Our reference genome contains 98.5% of the core Hymenopteran BUSCOs and was pseudo-scaffolded using the assembly of a related species, F. selysi (28 scaffolds, N50 = 8.49 Mb). Around one-third of the genome consists of repeats, and 17 426 gene models were annotated using both protein and RNAseq data (97.4% BUSCO completeness). This resource is of comparable quality to the few other single individual insect genomes assembled to date and paves the way to genomic studies of admixture in natural populations and comparative genomic approaches in Formica wood ants.
Project description:Mutualistic networks involving plants and their pollinators or frugivores have been shown recently to exhibit a particular asymmetrical organization of interactions among species called nestedness: a core of reciprocal generalists accompanied by specialist species that interact almost exclusively with generalists. This structure contrasts with compartmentalized assemblage structures that have been verified in antagonistic food webs. Here we evaluated whether nestedness is a property of another type of mutualism-the interactions between ants and extrafloral nectary-bearing plants--and whether species richness may lead to differences in degree of nestedness among biological communities. We investigated network structure in four communities in Mexico. Nested patterns in ant-plant networks were very similar to those previously reported for pollination and frugivore systems, indicating that this form of asymmetry in specialization is a common feature of mutualisms between free-living species, but not always present in species-poor systems. Other ecological factors also appeared to contribute to the nested asymmetry in specialization, because some assemblages showed more extreme asymmetry than others even when species richness was held constant. Our results support a promising approach for the development of multispecies coevolutionary theory, leading to the idea that specialization may coevolve in different but simple ways in antagonistic and mutualistic assemblages.
Project description:In ants, dispersal strategies and morphology of female sexuals are generally linked to the mode of colony founding. In species using long-range dispersal tactics, queen/worker dimorphism is generally high and young queens are able to initiate new colonies by themselves, using their metabolic reserves. By contrast, in species using short-range dispersal strategies, queen/worker dimorphism is generally low and, due to their limited metabolic reserves, queens have lost the capacity to raise their brood alone and to found their colony independently. Moreover, polygyny is also often associated with short-range dispersal strategies, although the relationship between the number of queens and the dispersal strategy in ants is not clear-cut. Here, dispersal strategies were investigated in C. pygmaea, a highly polygynous and polydomous ant species from northeastern Brazil. Field observations and laboratory experiments show that this ant exhibits a suite of traits that are more commonly associated with long-range dispersal and independent colony foundation: functional wings in both males and females, high queen/worker dimorphism, strong weight loss in mature queens, nuptial flights and, in the lab, ability of young queens to found new colonies in haplometrotic conditions. On the other hand, this species shows a high degree of polygyny with a strong seasonal component, and, at least under laboratory conditions, mature queens seem able to develop propagules if they are accompanied by at least 10 workers. These features strongly suggest that (1) some of the gynes do not engage in a long-range dispersal but become new queens in their mother colony and (2) that budding events are possible in this species. We therefore speculate that C. pygmaea has a dual dispersal strategy probably related to environmental conditions: some gynes engage in long-range dispersal followed by independent colony foundation at the beginning of rainy season, while others mate in the parental colony and are re-adopted leading to high polygyny. During the rainy season, budding events can lead to colony extension and increased polydomy. Polydomy is commonly thought to improve resource discovery and exploitation through decentralized foraging behavior, a significant advantage during the rainy season when food ressources (mainly floral/extrafloral nectaries and hemipteran honeydew) are more abundant and when colony needs for food supplies are highest.
Project description:The association between the myrmecophyte Triplaris and ants of the genus Pseudomyrmex is an often-reported example of mutualism in the Neotropics. The ants colonize the hollow stems of their hosts, and in exchange, the plants benefit from a reduced degree of herbivory. The previous studies have shown that workers can discriminate their host from other plants, including a closely related species. Little is known about how queens locate their host during the colonization process, but it has been suggested that host recognition is mediated by volatiles. Since queens of Pseudomyrmex mordax colonize their hosts during the seedling stage, we hypothesized that queens would discriminate leaves of seedlings from adult plants. To evaluate our hypothesis, we used a two-sided olfactometer, to test the preference of queens towards different leaf and plant ages of Triplaris americana. Virgin queens of Pseudomyrmex mordax preferred seedlings over adult plants, as well as plant leaves over empty controls, showing no discrimination for leaf age. Our results suggest that the volatiles virgin queens recognize are either produced or are more abundant at the early growing stage of the host when colonization is crucial for the host's survival.