Project description:Copy-number variants (CNVs) are large-scale amplifications or deletions of DNA that can drive rapid adaptive evolution and result in large-scale changes in gene expression. Whereas alterations in the copy number of one or more genes within a CNV can confer a selective advantage, other genes within a CNV can decrease fitness when their dosage is changed. Dosage compensation - in which the gene expression output from multiple gene copies is less than expected - is one means by which an organism can mitigate the fitness costs of deleterious gene amplification. Previous research has shown evidence for dosage compensation at both the transcriptional level and at the level of protein expression; however, the extent of compensation differs substantially between genes, strains, and studies. Here, we investigated sources of dosage compensation at multiple levels of gene expression regulation by defining the transcriptome, translatome and proteome of experimentally evolved yeast (Saccharomyces cerevisiae) strains containing adaptive CNVs.
Project description:We developed an artificial genome evolution system, which we termed ‘TAQing’, by introducing multiple genomic DNA double-strand breaks using a heat-activatable endonuclease in mitotic yeast. The heat-activated endonuclease, TaqI, induced random DSBs, which resulted in diverse types of chromosomal rearrangements including translocations. Array comparative genomic hybridization (aCGH) analysis was performed with cell-fused Saccharomyces cerevisiae strains induced genome evolution by TAQing system. Some of copy number variations (CNVs) induced by massive genome rearrangements were detected in the TAQed yeast strains.