Project description:Healthy brain function is mediated by several complementary signalling pathways, many of which are driven by extracellular vesicles (EVs). EVs are heterogeneous in both size and cargo and are constitutively released from cells into the extracellular milieu. They are subsequently trafficked to recipient cells, whereupon their entry can modify the cellular phenotype. Here, in order to further analyse the mRNA and protein cargo of neuronal EVs, we isolated EVs by size exclusion chromatography from human induced pluripotent stem cell (iPSC)-derived neurons. Electron microscopy and dynamic light scattering revealed that the isolated EVs had a diameter of 30-100 nm. Transcriptomic and proteomics analyses of the EVs and neurons identified key molecules enriched in the EVs involved in cell surface interaction (integrins and collagens), internalisation pathways (clathrin- and caveolin-dependent), downstream signalling pathways (phospholipases, integrin-linked kinase and MAPKs), and long-term impacts on cellular development and maintenance. Overall, we show that key signalling networks and mechanisms are enriched in EVs isolated from human iPSC-derived neurons.
Project description:To further investigate the molecular mechanisms by which EVs mediated the abnormal localization of tight junction proteins and adherence junction protein, we performed miRNA microarray analysis of extracellular vesicles isolated from breast cancer cells. miRNA expression in extracellular vesicles was collected from MDA-MB-231-D3H1, MDA-MB-231-D3H2LN, BMD2a and BMD2b breast cancer cell lines.
Project description:A growing body of evidence in mammalian cells indicates that secreted vesicles can be used to mediate intercellular communication processes by transferring various bioactive molecules, including mRNAs and microRNAs. Based on these findings, we decided to analyze whether T. cruzi-derived extracellular vesicles contain RNA molecules and performed a deep sequencing and genome-wide analysis of a size-fractioned cDNA library (16M-bM-^@M-^S40 nt) from extracellular vesicles secreted by noninfective epimastigote and infective metacyclic trypomastigote forms. Our data show that the small RNAs contained in these extracellular vesicles originate from multiple sources, including tRNAs. In addition, our results reveal that the variety and expression of small RNAs are different between parasite stages, suggesting diverse functions. Taken together, these observations call attention to the potential regulatory functions that these RNAs might play once transferred between parasites and/or to mammalian host cells. Small RNAs profiles (16-40 nt) of epimastigote-derived extracellular vesicles, metacyclic trypomastigote-derived extracellular vesicles and metacyclic trypomastigote parental cells.
Project description:Background: There is some evidence demonstrating the effect of psychological interventions in improvements in health biological parameters. To best of our knowledge, no study had addressed the impact of any psychological intervention on extracellular vesicles. In addition, Mindfulness-Based Cognitive Therapy (MBCT) and Emotion Focused Therapy for Cancer Recovery (EFT-CR) in the group have never been explored regarding extracellular vesicles and the effectiveness of these was not compared yet.
Objectives:
1. To explore and compare the effect of MBCT and EFT-CR on biological parameters and psychological variables in distressed people who have had breast, prostate and colorectal cancer;
2. In addition, we will explore the acceptability through recruitment and retention rates of MBCT and EFT-CR in group and evaluate whether these interventions are appropriate for a larger clinical trial.
Methods: The design of this study is a parallel randomized controlled trial. Participants will be randomized into MBCT, EFT-CR or usual care. Outcome measures will be assessed before, at the end of the intervention (8 weeks) and follow-ups (24 and 52 weeks from the baseline moment).
Hypotheses: The researchers expected that both interventions will have an effect on extracellular vesicles and other study biomarkers as well as improvements in psychological outcomes, compared to treatment as usual (TAU) group. Regarding the comparative effectiveness, we did not have evidence to hypothesize which one of the interventions will be superior in both biological (extracellular vesicles) and psychological outcomes.
Contribution for practice: The results of this preliminary study would permit to know if there are benefits of these psychological interventions on changes in extracellular vesicles and on psychological outcomes related to health. In addition, this study will permit to determine the acceptability of conducting a larger randomized controlled trial.
Project description:Extracellular vesicles (EVs) isolated from cell cultures contain miRNAs associated with T cell co-inhibitory receptors. These are differently regulated in EVs from RA patients and could contribute to the development of a chronic disease.
Project description:Plasmodium falciparum secretes extracellular vesicles that contain RNA. The biological benefit of this secretion to the secreting parasite is not known. Here, we sequenced the RNA content of extracellular vesicles and compared with that of the secreting whole parasites. The data suggests that extracellular vesicles might be part of a post-transcriptional regulatory mechanism that shapes intracellular RNA levels in the parasite.
Project description:Healthy brain function is mediated by several complementary signalling pathways, many of which are driven by extracellular vesicles (EVs). EVs are heterogeneous in both size and cargo and are constitutively released from cells into the extracellular milieu. They are subsequently trafficked to recipient cells, whereupon their entry can modify the cellular phenotype. Here, in order to further understand the functional role of EVs in neurons, we isolated EVs by size exclusion chromatography from human induced pluripotent stem cell (iPSC)-derived neurons. Electron microscopy and dynamic light scattering revealed that the isolated EVs had a diameter of 30-100 nm. Transcriptomic and proteomics analyses of the EVs and neurons identified key molecules enriched in the EVs involved in cell surface interaction (integrins and collagens), internalisation pathways (clathrin- and caveolin-dependent), downstream signalling pathways (phospholipases, integrin-linked kinase and MAPKs), and long-term impacts on cellular development and maintenance. Overall, we show that key signalling networks and mechanisms are enriched in EVs isolated from human iPSC-derived neurons, and identify subpopulations of EVs defined by differential tetraspanin expression.
Project description:Exosomes/microvesicles (hereafter referred to as extracellular vesicles) were isolated from the ULF of day 14 cyclic and pregnant ewes using ExoQuick-TC. Extracellular vesicle RNA was pooled (n=4 per status) and analyzed for small RNAs by sequencing on the Ion Torrent PGM platform and analysis with CLC Genomics Workbench small RNA workflow based on the miRBase (Release 19) Bos taurus database. Small RNA analysis of day 14 uterine luminal fluid extracellular vesicles isolated from pregnant and cyclic ewes.
Project description:Similar to bacterial proteins that are targeted to distinct macrophages organelles via extracellular vesicles, we propose that these vesicles also traffic small RNAs to modulate specific host factors. To test this, we aim to sequence extracellular vesicle derived sRNA, and whole bacterial small RNAs to determine selectivity, and to identify their bacterial and mammalian targets (Experimental Plan in Table-1). For this we will collect highly purified vesicles from N. gonorrhoeae (strain MS11A). We will also treat mouse derived primary macrophages with extracellular vesicles and compare their RNA response to untreated macrophages (Table-2). This will provide novel insights into how macrophages respond to N. gonorrhoeae infections. This data is part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/