Project description:We performed RNAseq for gene expression analysis for six strains of Acinetobacter Baumannii isolated from blood samples (defined as strains 1, 2, 3, 4 and 6) of patients hospitalized at the University Hospital \\"San Giovanni di Dio e Ruggi d'Aragona\\" (Salerno, Italy)
Project description:Complete or high-quality draft genome sequences of six Xanthomonas hortorum strains sequenced with short- and long-read technologies
Project description:In recent years, the Gram-negative bacterium Acinetobacter baumannii has garnered considerable attention for its unprecedented capacity to rapidly develop resistance to antibacterial therapeutics. This is coupled with the seemingly epidemic emergence of new hyper-virulent strains. Although strain-specific differences for A. baumannii isolates have been well described, these studies have primarily focused on proteinaceous factors. At present, only limited publications have investigated the presence and role of small regulatory RNA (sRNA) transcripts. Herein, we perform such an analysis, describing the RNA-seq-based identification of 78 A. baumannii sRNAs in the AB5075 background. Together with six previously identified elements, we include each of these in a new genome annotation file, which will serve as a tool to investigate regulatory events in this organism. Our work reveals that the sRNAs display high expression, accounting for >50 % of the 20 most strongly expressed genes. Through conservation analysis we identified six classes of similar sRNAs, with one found to be particularly abundant and homologous to regulatory, C4 antisense RNAs found in bacteriophages. These elements appear to be processed from larger transcripts in an analogous manner to the phage C4 molecule and are putatively controlled by two further sRNAs that are strongly antisense to them. Collectively, this study offers a detailed view of the sRNA content of A. baumannii, exposing sequence and structural conservation amongst these elements, and provides novel insight into the potential evolution, and role, of these understudied regulatory molecules. This study is based on the annotation of novel sRNAs on basis of an Acinetobacter baumannii RNA sequencing dataset. Each sample was generated by pooling three independent biological replicate RNA preps
Project description:The experiment contains native Tn-seq data for Acinetobacter baumannii strain AB5075 with different genetic alterations. The strain was grown at 37 degrees in LB medium and genomic DNA was isolated. We then used PCR to select for DNA regions containing a junction between ISAba13 and chromosomal DNA. Libraries were then prepared using these DNA fragments.
Project description:The goal of this RNA-Seq study was to determine Acinetobacter baumannii's transcriptiional response to sub-MIC concentrations of benzalkonium chloride in Acinetobacter baumannii. This RNA-seq data was then utilized to aide in the determination of the sub-MIC mechanism of action for benzalkonium chloride.
Project description:Two Acinetobacter baumannii strains with low susceptibility to fosmidomycin and two reference with high susceptibility to fosmidomycin were DNA-sequenced to investigate the genomic determinants of fosmidomycin resistance.
Project description:The experiment contains ChIP-seq data for Acinetobacter baumannii strain AB5075 encoding 3xFLAG tagged H-NS. Experiments were done with or without ectopic expression of the truncated H-NS-39 protein (corresponding to the H-NS multimerization surface). The strain was grown at 37 degrees in LB medium and crosslinked with 1 % (v/v) formaldehyde. After sonication, to break open cells and fragment DNA, immunoprecipitations were done using anti-FLAG antibodies against. Libraries were prepared using DNA remaining after immunoprecipitation.