Project description:Spiders are one of the most successful venomous animals, with more than 48,000 described species. Most spider venoms are dominated by cysteine-rich peptides with a diverse range of pharmacological activities. Some spider venoms contain thousands of unique peptides, but little is known about the mechanisms used to generate such complex chemical arsenals. We used an integrated transcriptomic, proteomic, and structural biology approach to demonstrate that the lethal Australian funnel-web spider produces 33 superfamilies of venom peptides and proteins. Twenty-six of the 33 superfamilies are disulfide-rich peptides, and we show that 15 of these are knottins that contribute >90% of the venom proteome. NMR analyses revealed that most of these disulfide-rich peptides are structurally related and range in complexity from simple to highly elaborated knottin domains, as well as double-knot toxins, that likely evolved from a single ancestral toxin gene.
Project description:Background The generalist dipteran pupal parasitoid Nasonia vitripennis injects 79 venom peptides into the host before egg laying. This venom induces several important changes in the host, including developmental arrest, immunosuppression, and alterations to normal metabolism. It is hoped that diverse and potent bioactivities of N. vitripennis venom provide an opportunity for the design of novel acting drugs. However, currently very little is known about the individual functions of N. vitripennis venom peptides and less than half can be bioinformatically annotated. The paucity of annotation information complicates the design of studies that seek to better understand the potential mechanisms underlying the envenomation response. Although the RNA interference system of N. vitripennis provides an opportunity to functionally characterise venom encoding genes, with 79 candidates this represents a daunting task. For this reason we were interested in determining the expression levels of venom encoding genes in the venom gland, such that this information could be used to rank candidate venoms. To do this we carried out deep sequencing of the transcriptome of the venom gland and neighbouring ovary tissue and used RNA-seq to measure expression from the 79 venom encoding genes. The generation of a specific venom gland transcriptome dataset also provides further opportunities to investigate novel features of this highly specialised organ. Results High throughput sequencing and RNA-seq revealed that the highest expressed venom encoding gene in the venom gland was a serine protease called Nasvi2EG007167, which has previously been implicated in the apoptotic activity of N. vitripennis venom. As expected the RNA-seq confirmed that the N. vitripennis venom encoding genes are almost exclusively expressed in the venom gland relative to the neighbouring ovary tissue. Novel peptides appear to perform key roles in N. vitripennis venom function as only four of the highest 15 expressed venom encoding genes are bioinformatically annotationed. The high throughput sequencing data also provided evidence for the existence of an additional 471 novel genes in the Nasonia genome that are expressed in the venom gland and ovary. Finally, metagenomic analysis of venom gland transcripts identified viral transcripts that may play an important part in the N. vitripennis venom function. Conclusions The expression level information provided here for the 79 venom encoding genes provides an unbiased dataset that can be used by the N. vitripennis community to identify high value candidates for further functional characterisation. These candidates represent bioactive peptides that have value in drug development pipelines.
Project description:In order to provide a global insight on the transcripts expressed in the venom gland of the Brazilian ant species Tetramorium bicarinatum and to unveil the potential of its products, high-throughput expressed sequence tags were generated using Illumina paired-end sequencing technology. A total of 212,371,758 pairs of quality-filtered, 100-base-pair Illumina reads were obtained. The de novo assemblies yielded 36,042 contigs for which 27,873 have at least one predicted ORF among which 59.77% produce significant hits in the available databases. The investigation of the reads mapping toxin class revealed a high diversification with the major part consistent with the classical hymenopteran venom protein signature represented by venom allergen (33.3%) followed by a diverse toxin-expression profile including several distinct isoforms of phospholipase A1 and A2, venom serine protease, hyaluronidase, protease inhibitor and secapin. Moreover, our results revealed for the first time the presence of toxin-like peptides that have been previously identified from unrelated venomous animals such as waprin-like (snakes) and agatoxins (spiders and conus). 300 ant specimens from the species Tetramorium bicarinatum were dissected in order to extract the RNA from their venom gland, The whole ant body was used as a reference,
Project description:Both single cell and bulk RNA sequencing was performed on expanding or differentiating snake venom gland organoids (from Aspidelaps Lubricus Cowlesi and Naja Nivea), or tissue (Aspidelaps Lubricus Cowlesi). Bulk RNA sequencing from the snake venom gland, liver and pancreas was performed to construct a de novo transcriptome using Trinity.
Project description:In order to provide a global insight on the transcripts expressed in the venom gland of the Brazilian ant species Tetramorium bicarinatum and to unveil the potential of its products, high-throughput expressed sequence tags were generated using Illumina paired-end sequencing technology. A total of 212,371,758 pairs of quality-filtered, 100-base-pair Illumina reads were obtained. The de novo assemblies yielded 36,042 contigs for which 27,873 have at least one predicted ORF among which 59.77% produce significant hits in the available databases. The investigation of the reads mapping toxin class revealed a high diversification with the major part consistent with the classical hymenopteran venom protein signature represented by venom allergen (33.3%) followed by a diverse toxin-expression profile including several distinct isoforms of phospholipase A1 and A2, venom serine protease, hyaluronidase, protease inhibitor and secapin. Moreover, our results revealed for the first time the presence of toxin-like peptides that have been previously identified from unrelated venomous animals such as waprin-like (snakes) and agatoxins (spiders and conus).
Project description:Diachasmimorpha longicaudata parasitoid wasps carry a symbiotic poxvirus, known as DlEPV, within the female wasp venom gland. We sequenced RNA from venom gland tissue to identify DlEPV orthologs for 3 conserved poxvirus core genes. The DlEPV ORFs identified from this transcriptome were used to design primers for downstream RT-qPCR analysis and RNAi knockdown experiments.
Project description:Many of duplicated genes are enriched in signaling pathways. Recently, gene duplication of kinases has been shown to provide genetic buffering and functional diversification in cellular signaling. Transcription factors (TFs) are also often duplicated. However, how duplication of TFs affects their regulatory structures and functions of target genes has not been explored at the systems level. Here, we examined regulatory and functional roles of duplication of three major ARR TFs (ARR1, 10, and 12) in Arabidopsis cytokinin signaling using wild-type and single, double, and triple deletion mutants of the TFs. Comparative analysis of gene expression profiles obtained from Arabidopsis roots in wild-type and these mutants showed that duplication of ARR TFs systematically extended their transcriptional regulatory structures, leading to enhanced robustness and diversification in functions of target genes, as well as in regulation of cellular networks of target genes. Therefore, our results suggest that duplication of TFs contributes to robustness and diversification in functions of target genes by extending transcriptional regulatory structures.
Project description:Callobius koreanus (C.koreanus) is a wandering spider and a member of the Amaurobiidae family, infraorder Araneae. RNA-sequencing was performend for venom gland tissue and whole body except venom gland.
Project description:Agelena koreana is indigenous spider in South Korea that lives on piles of trees building webs. RNA-sequencing was performed for venom gland tissue and whole body except venom gland.
Project description:Entomopathogenic nematodes (EPNs) are unique parasitic nematodes due to their symbiosis with entomopathogenic bacteria and their ability to kill insect hosts quickly after infection. Although it has been widely believed that EPNs rely on their bacterial partners for killing insect hosts, compelling evidence from previous studies challenges this model. We developed an improved method of activating millions of Steinernema carpocapsae infective juveniles (IJs) in vitro to harvest excreted/secreted (ES) proteins for bioactivity tests and proteomics analysis. We found that a low dose of the ES proteins from early activated nematodes is lethal to Drosophila melanogaster adults within 2-6 hours. We analyzed the protein composition of this venom using mass spectrometry and identified 472 proteins. Many of these venom proteins share high homology with those of vertebrate-parasitic nematodes. Among many different families of proteins found in the venom, proteases and protease inhibitors are especially abundant. Some toxin-related proteins such as Shk domain-containing proteins were also detected. We further analyzed the transcriptomes of individual non-activated IJs and nematodes that were activated in vitro and in vivo, which revealed a dramatic shift in gene expression during IJ activation. By comparing the whole transcriptomes and the genes encoding venom proteins between the in vitro and in vivo activated nematodes, we confirmed that the in vitro activation is a good approximation of the in vivo process. In summary, our findings strongly support a new model that S. carpocapsae and likely other Steinernema EPNs have a more active role in contributing to the pathogenicity of the nematode-bacterium complex than simply relying on their symbiotic bacteria. Furthermore, we propose that EPNs are a good model system for investigating vertebrate- and human-parasitic nematodes, especially regarding the function of ES products.