Uncultured novel prokaryotic genomes associated with with aquatic environments
Ontology highlight
ABSTRACT: Recovery of novel prokaryotic genomes associated with aquatic environments, based on assembly and binning of publicly available sequence data.
Project description:Conventional prokaryotic RNA labeling method usually requires large amounts of starting materials and tends to generate high background signals. Recently, two novel methods based on amplification systems were introduced. Here, we compared three alternative strategies: direct labeling method, ployadenylation-involved oligo-dT priming amplification method and random priming amplification method (hereafter referred to as DL, PAOD and RPA method in this article) for prokaryotic RNA labeling employing the expression profiling investigation in Escherichia coli (E. coli) heat shock model.
Project description:Light is a source of energy and an environmental cue that is available in excess in most surface environments. In prokaryotic systems, conversion of light to energy by photoautotrophs and photoheterotrophs is well understood, but the conversion of light to information and the cellular response to that information has been characterized in only a few species. Our goal was to explore the response of freshwater Actinobacteria, which are ubiquitous in illuminated aquatic environments, to light. We found that Actinobacteria without functional photosystems grow faster in the light, likely because sugar transport and metabolism are upregulated in the light, while protein synthesis is upregulated in the dark. Based on the action spectrum of the growth effect, and comparisons of the genomes of three Actinobacteria with this growth rate phenotype, we propose that the photosensor in these strains is a putative CryB-type cryptochrome. The ability to sense light and upregulate carbohydrate transport during the day could allow these cells to coordinate their time of maximum organic carbon uptake with the time of maximum organic carbon release by primary producers.
Project description:Light is a source of energy and an environmental cue that is available in excess in most surface environments. In prokaryotic systems, conversion of light to energy by photoautotrophs and photoheterotrophs is well understood, but the conversion of light to information and the cellular response to that information has been characterized in only a few species. Our goal was to explore the response of freshwater Actinobacteria, which are ubiquitous in illuminated aquatic environments, to light. We found that Actinobacteria without functional photosystems grow faster in the light, likely because sugar transport and metabolism are upregulated in the light, while protein synthesis is upregulated in the dark. Based on the action spectrum of the growth effect, and comparisons of the genomes of three Actinobacteria with this growth rate phenotype, we propose that the photosensor in these strains is a putative CryB-type cryptochrome. The ability to sense light and upregulate carbohydrate transport during the day could allow these cells to coordinate their time of maximum organic carbon uptake with the time of maximum organic carbon release by primary producers.
Project description:We present Prokaryotic Expression-profiling by Tagging RNA In Situ and sequencing (PETRI-seq), a high-throughput prokaryotic scRNA-seq pipeline. We demonstrated that PETRI-seq effectively barcoded single bacterial cells in a species-mixing experiment with E. coli (MG1655) and S. aureus (USA300). Within the S. aureus population, we found rare prophage induction in 0.04% of cells. We further demonstrated that PETRI-seq was able to distinguish between E. coli growth phases based on mRNA expression patterns by combining stationary E. coli with exponential E. coli in multiple experiments.