Project description:Phosphorus, in its orthophosphate form (Pi), is one of the most limiting macronutrients in soils for plant growth and development. However, the whole genome molecular mechanisms contributing to plant acclimation to Pi deficiency remain largely unknown. White lupin (Lupinus albus L.) has evolved unique adaptations for growth in Pi deficient soils including the development of cluster roots to increase root surface area. In this study, we utilized RNA-Seq technology to assess global gene expression in white lupin cluster roots, normal roots, and leaves in response to Pi supply. We de novo assembled 277,224,180 Illumina reads from 12 cDNA libraries to build the first white lupin gene index (LAGI 1.0). This index contains 125,821 unique sequences with an average length of 1,155 bp. Of these sequences 50,734 were transcriptionally active (RPKM = 3) representing approximately 7.8% of the Lupinus albus genome, using the predicted genome size of Lupinus angustifolius as a reference. We identified a total of 2,128 sequences differentially expressed in response to Pi deficiency with a = 2-fold change and a p-value = 0.05. Twelve sequences were consistently differentially expressed due to Pi deficiency stress in three species, making them ideal candidates to monitor the Pi status of plants. Additionally, classic physiological experiments were coupled with RNA-Seq data to examine the role of cytokinin and gibberellic acid in Pi deficiency-induced cluster root development. This global gene expression analysis provides new insights into the biochemical and molecular mechanisms involved in the acclimation to Pi deficiency. Examination of 2 different tissue types (roots and leaves) under phosphorus (P) -sufficient or P-deficient condition with 3 biological replications per condition in white lupin (Lupinus albus).
Project description:Phosphorus, in its orthophosphate form (P(i)), is one of the most limiting macronutrients in soils for plant growth and development. However, the whole-genome molecular mechanisms contributing to plant acclimation to P(i) deficiency remain largely unknown. White lupin (Lupinus albus) has evolved unique adaptations for growth in P(i)-deficient soils, including the development of cluster roots to increase root surface area. In this study, we utilized RNA-Seq technology to assess global gene expression in white lupin cluster roots, normal roots, and leaves in response to P(i) supply. We de novo assembled 277,224,180 Illumina reads from 12 complementary DNA libraries to build what is to our knowledge the first white lupin gene index (LAGI 1.0). This index contains 125,821 unique sequences with an average length of 1,155 bp. Of these sequences, 50,734 were transcriptionally active (reads per kilobase per million reads ≥ 3), representing approximately 7.8% of the white lupin genome, using the predicted genome size of Lupinus angustifolius as a reference. We identified a total of 2,128 sequences differentially expressed in response to P(i) deficiency with a 2-fold or greater change and P ≤ 0.05. Twelve sequences were consistently differentially expressed due to P(i) deficiency stress in three species, Arabidopsis (Arabidopsis thaliana), potato (Solanum tuberosum), and white lupin, making them ideal candidates to monitor the P(i) status of plants. Additionally, classic physiological experiments were coupled with RNA-Seq data to examine the role of cytokinin and gibberellic acid in P(i) deficiency-induced cluster root development. This global gene expression analysis provides new insights into the biochemical and molecular mechanisms involved in the acclimation to P(i) deficiency.
Project description:Deciphering the various chemical modifications of both DNA and the histone compound of chromatin not only leads to a better understanding of the genome-wide organization of epigenetic landmarks and their impact on gene expression but may also provide some insights into the evolutionary processes. Although both histone modifications and DNA methylation have been widely investigated in various plant genomes, here we present the first study for the genus Lupinus. Lupins, which are members of grain legumes (pulses), are beneficial for food security, nutrition, health and the environment. In order gain a better understanding of the epigenetic organization of genomes in lupins we applied the immunostaining of methylated histone H3 and DNA methylation as well as whole-genome bisulfite sequencing. We revealed variations in the patterns of chromatin modifications at the chromosomal level among three crop lupins, i.e. L. angustifolius (2n=40), L. albus (2n=50) and L. luteus (2n=52), and the legume model plant Medicago truncatula (2n=16). Different chromosomal patterns were found depending on the specific modification, e.g. H3K4me2 was localised in the terminal parts of L. angustifolius and M. truncatula chromosomes, which is in agreement with the results that have been obtained for other species. Interestingly, in L. albus and L. luteus this modification was limited to one arm in the case of all of the chromosomes in the complement. Additionally, H3K9me2 was detected in all of the analysed species except L. luteus. DNA methylation sequencing (CG, CHG and CHH contexts) of aforementioned crop but also wild lupins such as L. cosentinii (2n=32), L. digitatus (2n=36), L. micranthus (2n=52) and L. pilosus (2n=42) supported the range of interspecific diversity. The examples of epigenetic modifications illustrate the diversity of lupin genomes and could be helpful for elucidating further epigenetic changes in the evolution of the lupin genome.
Project description:Obtaining large amounts of protein of plant origin is an indispensable prospect from the perspective of environmental changes taking place on earth. However, it is extremely important to be able to diversify the sources of plant proteins, which is affected, among other things, by their local availability, sensitivity to specific climatic conditions of the region, and the qualitative differentiation of amino acids. A lot of data show that higher amounts of protein with improved properties can be obtained from species native to a specific climate zone. In Europe, such species include yellow lupine (Lupinus luteus L.), narrow-leaved lupine (Lupinus angustifolius) and white lupine (Lupinus albus L.). In the case of yellow lupine, the amount may be up to 40% of the dry weight of the seeds. Additionally, these proteins have a favorable amino acid composition. Detailed understanding of the mechanisms and the process of accumulating storage proteins is invaluable for the study of the use of this species to increase the production of plant proteins. In the presented work, yellow lupine seeds cultivar Taper, which were cultivated in the field, were used for the research. Therefore, the aim of the research was to identify genes encoding storage proteins (conglutins) and genes regulating the process of accumulation of storage proteins in the seeds of yellow lupine cultivar Taper in the following days of their development.