Project description:Intercellular signal indole and its derivative hydroxyindoles inhibit Escherichia coli biofilm and diminish Pseudomonas aeruginosa virulence. However, indole and bacterial indole derivatives were unstable in microbial community due to the widespread of diverse oxygenases that could quickly degrade them. Hence, we sought to identify novel non-toxic, stable, and potent indole derivatives from plant sources for inhibiting biofilm formation of E. coli O157:H7 and P. aeruginosa PAO1. Here, plant auxin 3-indolylacetonitrile (IAN) was found to inhibit biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth. IAN inhibited biofilms more effectively than indole for both E. coli and P. aeruginosa. Additionally, IAN decreased the production of virulence factor pyocyanin in P. aeruginosa. DNA microarray analysis indicated that IAN repressed genes involved in curli formation and glycerol metabolism, while IAN induced indole-related genes and prophage genes in E. coli. It appears that IAN inhibits biofilm formation of E. coli by reducing curli formation and inducing indole production. Furthermore, unlike bacterial indole derivatives, plant-originated IAN was stable in the presence of either E. coli or P. aeruginosa.
Project description:Biofilm lifestyle is critical for bacterial pathogens to colonize and protect themselves from host immunity and antimicrobial chemicals in plants and animals. The formation and regulation mechanism of phytobacterial biofilm are still obscure. Here, we found that Ralstonia solanacearum Resistance to ultraviolet C (RuvC) is highly abundant in biofilm and positively regulates pathogenicity by governing systemic movement in tomato xylem. RuvC protein accumulates at the later stage of biofilm and specifically targets the Holliday junction (HJ) like structures to disrupt biofilm extracellular DNA (eDNA) lattice, thus facilitating biofilm dispersal. Recombinant RuvC protein can resolve extracellular HJ prevent bacterial biofilm formation. Heterologous expression of R. solanacearum or Xanthomonas oryzae pv. oryzae RuvC with plant secretion signal in tomato or rice confers resistance to bacterial wilt or bacterial blight disease, respectively. Plant chloroplast localized HJ resolvase monokaryotic chloroplast 1 (MOC1) which is structural similar to bacterial RuvC shows a strong inhibit effect on bacterial biofilm formation. Re-localization of SlMOC1 to apoplast in tomato roots leads to increase resistance to bacterial wilt. Our novel finding reveals a critical pathogenesis mechanism of R. solanacearum and provides an efficient biotechnology strategy to improve plant resistance to bacteria vascular disease.
Project description:This study investigates the mechanisms employed by Salmonella to colonise and establish itself on fresh produce at critical timepoints following infection. We established an alfalfa infection model and compared the findings to those obtained from glass surfaces. Our research revealed dynamic changes in the pathways associated with biofilm formation over time, with distinct plant-specific and glass-specific mechanisms for biofilm formation, alongside the identification of shared genes playing pivotal roles in both contexts.
Project description:Contamination with enterohemorrhagic Escherichia coli O157:H7 (EHEC) is a worldwide problem but there is no effective therapy available for EHEC infection. Biofilm formation is closely related with EHEC infection and is one of the mechanisms of antimicrobial resistance. Antibiofilm screening of 560 plant secondary metabolites against EHEC shows that ginkgolic acids C15:1 and C17:1 at 5 μg/ml and Ginko biloba extract at 100 μg/ml significantly inhibited EHEC biofilm formation on the surface of polystyrene, nylon membrane, and glass. Importantly, the working concentration of ginkgolic acids and G. biloba extract did not affect bacterial growth and has been known to be non-toxic to human. Transcriptional analyses showed that ginkgolic acid C15:1 repressed curli genes and prophage genes in EHEC, which were corroborated by reduced fimbriae production and biofilm reduction in EHEC. Interestingly, ginkgolic acids and G. biloba extract did not inhibit the biofilm formation of commensal E. coli K-12 strain. The current study suggests that plant secondary metabolites are important resource of biofilm inhibitors, as well as other bioactive compounds.
Project description:L-rhamnose, a naturally abundant sugar, plays diverse biological roles in bacteria, influencing biofilm formation and pathogenesis. This study investigates the global impact of L-rhamnose on the transcriptome and biofilm formation of PHL628 E. coli under various experimental conditions. We compared growth in planktonic and biofilm states in rich (LB) and minimal (M9) media at 28 °C and 37 °C, with varying concentrations of L-rhamnose or D-glucose as a control. Our results reveal that L-rhamnose significantly affects growth kinetics and biofilm formation, particularly reducing biofilm growth in rich media at 37 °C. Transcriptomic analysis through RNA-seq showed that L-rhamnose modulates gene expression differently depending on the temperature and media conditions, promoting a planktonic state by upregulating genes involved in rhamnose transport and metabolism and downregulating genes related to adhesion and biofilm formation. These findings highlight the nuanced role of L-rhamnose in bacterial adaptation and survival, providing insights for potential applications in controlling biofilm-associated infections and industrial biofilm management.
Project description:Intercellular signal indole and its derivative hydroxyindoles inhibit Escherichia coli biofilm and diminish Pseudomonas aeruginosa virulence. However, indole and bacterial indole derivatives were unstable in microbial community due to the widespread of diverse oxygenases that could quickly degrade them. Hence, we sought to identify novel non-toxic, stable, and potent indole derivatives from plant sources for inhibiting biofilm formation of E. coli O157:H7 and P. aeruginosa PAO1. Here, plant auxin 3-indolylacetonitrile (IAN) was found to inhibit biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth. IAN inhibited biofilms more effectively than indole for both E. coli and P. aeruginosa. Additionally, IAN decreased the production of virulence factor pyocyanin in P. aeruginosa. DNA microarray analysis indicated that IAN repressed genes involved in curli formation and glycerol metabolism, while IAN induced indole-related genes and prophage genes in E. coli. It appears that IAN inhibits biofilm formation of E. coli by reducing curli formation and inducing indole production. Furthermore, unlike bacterial indole derivatives, plant-originated IAN was stable in the presence of either E. coli or P. aeruginosa.
Project description:P. aeruginosa PA14 mutant strain PA4496 expression in biofilm cells relative to PA14 wild-type strain expression in biofilm cells. All samples cultured in LB with glass wool
Project description:Transcriptional analysis of biofilm wild-type and cra mutant E. coli cells was carried out to determine the effect of cra on biofilm formation.