Project description:The genetic structure of the indigenous hunter-gatherer peoples of Southern Africa, the oldest known lineage of modern man, holds an important key to understanding humanity's early history. Previously sequenced human genomes have been limited to recently diverged populations. Here we present the first complete genome sequences of an indigenous hunter-gatherer from the Kalahari Desert and of a Bantu from Southern Africa, as well as protein-coding regions from an additional three hunter-gatherers from disparate regions of the Kalahari. We characterize the extent of whole-genome and exome diversity among the five men, reporting 1.3 million novel DNA differences genome-wide, and 13,146 novel amino-acid variants. These data allow genetic relationships among Southern African foragers and neighboring agriculturalists to be traced more accurately than was previously possible. Adding the described variants to current databases will facilitate inclusion of Southern Africans in medical research efforts.
Project description:For phytophagous insects, the efficiency of utilization of hemicellulose and cellulose depends on the gut microbiota. Shifts in environmental and management conditions alter the presence and abundance of plant species which may induce adaptations in the diversity of gut microbiota. To test the adaptation of the microbiota to a shift from a natural diverse to a monocultural meadow with Dactylis glomerata the highly abundant grasshopper species, Chorthippus dorsatus, was taken from the wild and kept in captivity and were fed with Dactylis glomerata for five days. The feces were collected and analyzed by metaproteomics. After the diet shift from a diverse source to the single source, the microbiota composition stays relatively stable. The Bacilli as the group of highest abundance did not change on the functional level. In contrast, pronounced shifts of amino acid and carbohydrate metabolism in Clostridia and Proteobacteria were observed. Hence, the adaptation upon short-term change of food source in this grasshopper species is dominated by functional adaptations and not by shifts in the community structure of the microbiota. This suggests that the microbiota of grasshoppers is capable to cope also with the loss of diverse feeding plants at least for a shorter time period.
Project description:Southern California (USA) populations of the intertidal marine snail Chlorostoma (formerly Tegula) funebralis are generally exposed to higher air and water temperatures than northern California populations. Previous studies have shown that southern populations are more tolerant of heat stress than northern populations. To assess the potential role of gene regulation in these regional differences, we examined transcriptome responses to thermal stress in two southern and two northern populations of C. funebralis. Snails from the four populations were acclimated to a common lab environment, exposed to a heat stress representative of natural low tide conditions, and then analyzed using RNA-Seq to characterize changes in gene expression associated with stress and differences in expression across geographic regions. Changes in expression following stress were dominated by genes involved in apoptosis, the inflammatory response, response to mis and unfolded proteins, and ubiquitination of proteins. Heat shock proteins (Hsps) were up-regulated in both northern and southern populations. However, while the magnitude of the response was significantly greater in northern populations for the majority of Hsp70s, the southern populations showed a greater up-regulation for roughly half of the Hsp40s, which are co-chaperones for Hsp70s. Differential expression analysis of the control versus treatment genes in the northern and southern populations respectively revealed that 56 genes, many involved in the inflammation and immune response, responded to heat stress only in the northern populations. Moreover, several of the molecular chaperones and antioxidant genes that were not differentially expressed in the southern populations instead showed higher constitutive expression under control conditions compared to the northern populations. The expression levels of some of these constitutive genes such as superoxide dismutase were also found to positively correlate with survival following heat stress. This suggests that expression of these genes has evolved a degree of “frontloading” that may contribute to the higher thermal tolerance of southern populations.