Project description:We used PacBio data to identify more reliable transcripts from hESC, based on which we can estimate gene/transcript abundance better from Illumina data. PacBio long reads and Illumina short reads were generated from the same hESC cell line H1. PacBio reads were error-corrected by Illumina reads to identify transcripts. rSeq is used to estimate gene/transcript abundance of the identified transcriptome.
Project description:We used PacBio data to identify more reliable transcripts from hESC, based on which we can estimate gene/transcript abundance better from Illumina data.
Project description:Long-read sequencing technologies such as Iso-Seq (PacBio Inc.) generate highly accurate sequences of full-length mRNA transcript isoforms. Long-read transcriptomics may be especially useful in the context of lymphocyte functional plasticity as it relates to human health and disease. However, no long-read isoform-aware reference transcriptomes of human circulating lymphocytes seem to be publicly available despite being valuable as benchmarks in a variety of transcriptomic studies. To begin to fill this gap, we purified four lymphocyte subsets (CD4 T, CD8 T, NK, and Pan B cells) from the peripheral blood of a healthy male donor and obtained high-quality RNA (RIN>8) for PacBio Iso-Seq analysis and parallel RNA-Seq analysis.
Project description:Long-read sequencing technologies such as Iso-Seq (PacBio Inc.) generate highly accurate sequences of full-length mRNA transcript isoforms. Long-read transcriptomics may be especially useful in the context of lymphocyte functional plasticity as it relates to human health and disease. However, no long-read isoform-aware reference transcriptomes of human circulating lymphocytes seem to be publicly available despite being valuable as benchmarks in a variety of transcriptomic studies. To begin to fill this gap, we purified four lymphocyte subsets (CD4 T, CD8 T, NK, and Pan B cells) from the peripheral blood of a healthy male donor and obtained high-quality RNA (RIN>8) for PacBio Iso-Seq analysis and parallel RNA-Seq analysis.
Project description:Rapidly increased studies by third-generation sequencing [Pacific Biosciences (Pacbio) and Oxford Nanopore Technologies (ONT)] have been used in all kinds of research areas. Among them, the plant full-length single-molecule transcriptome studies were most used by Pacbio while ONT was rarely used. Therefore, in this study, we developed ONT RNA-sequencing methods in plants. We performed a detailed evaluation of reads from Pacbio and Nanopore PCR cDNA (ONT Pc) sequencing in plants (Arabidopsis), including the characteristics of raw data and identification of transcripts. We aimed to provide a valuable reference for applications of ONT in plant transcriptome analysis.
Project description:Metagenomic sequence data from defined mock communities is crucial for the assessment of sequencing platform performance and downstream analyses, including assembly, binning and taxonomic assignment. We report a comparison of shotgun metagenome sequencing and assembly metrics of a defined microbial mock community using the Oxford Nanopore Technologies (ONT) MinION, PacBio and Illumina sequencing platforms. Our synthetic microbial community BMock12 consists of 12 bacterial strains with genome sizes spanning 3.2-7.2 Mbp, 40-73% GC content, and 1.5-7.3% repeats. Size selection of both PacBio and ONT sequencing libraries prior to sequencing was essential to yield comparable relative abundances of organisms among all sequencing technologies. While the Illumina-based metagenome assembly yielded good coverage with few misassemblies, contiguity was greatly improved by both, Illumina?+?ONT and Illumina?+?PacBio hybrid assemblies but increased misassemblies, most notably in genomes with high sequence similarity to each other. Our resulting datasets allow evaluation and benchmarking of bioinformatics software on Illumina, PacBio and ONT platforms in parallel.
Project description:Herpes simplex virus type 1 (HSV-1) is a 152 Kb double stranded DNA alpha-herpesvirus, which establishes long life latent infection in sensory neurons. Most of our knowledge regarding HSV-1 latency comes from in vivo studies using small animal models, mainly rodents and rabbits, which are not naturally infected by HSV-1. Furthermore, these animal models do not fully recapitulate the species specific effects of human HSV-1 infection. Human cellular models utilize trigeminal ganglia removed from cadavers or, alternatively, neuron-like cells derived from cancerous cell lines that do not fully reflect effects on normal human neurons. This limitation poses the need to develop an in vitro model to investigate molecular details of the mechanisms underlying latency and reactivation in human neurons. Induced pluripotent stem (iPS) cell technologies offer an unprecedented opportunity to generate unlimited supplies of neurons and the facility to manipulate such cells in vitro. In this study, we developed an in vitro HSV-1 infection model in human iPS-derived neural progenitor cells (NPCs) and neurons, which displays the main hallmarks of latency defined in animal models and in humans. Induced pluripotent stem (iPS) cells were generated from human skin biopsy samples