Project description:The mechanisms underlying exercise-induced effects in the skeletal muscle during cancer cachexia progression have not been fully described. Here, we tested the hypothesis that different exercise training protocols could attenuate metabolic impairment in a severe model of cancer cachexia. Moderate-intensity training (MIT) and high-intensity interval training (HIIT) improved running capacity and prolonged lifespan in tumor-bearing rats. HIIT also reduced oxidative stress and reestablished muscle contractile function. An unbiased proteomics screening revealed that COP9 signalosome complex subunit 2 (COPS2), also known as thyroid receptor interacting protein 15 (TRIP15) or ALIEN, is one of the most downregulated proteins at the early stage of cancer cachexia progression. HIIT restored COPS2/TRIP15/ALIEN protein expression to the control levels. Moreover, lung cancer patients with low endurance capacity had lower muscle COPS2/TRIP15/ALIEN protein content compared to age- and sex-matched control subjects. We further established an in vitro model of cancer-induced muscle wasting using tumor cells-conditioned media to explore the potential protective role of COPS2/TRIP15/ALIEN for myotubes homeostasis. This in vitro model indicate that tumor cells produce factors that directly affect myotube metabolism, but COPS2/TRIP15/ALIEN overexpression is not able to fully reestablish metabolic homeostasis and protein content in myotubes incubated with tumor cells-conditioned media. The current study provides new insight into the role of exercise training as a co-therapy for cancer cachexia and uncovers COPS2/TRIP15/ALIEN as a novel potential target for cancer cachexia.
Project description:Species identification of fragmentary bones remains a challenging task in archeology and forensics. A species identification method for such fragmentary bones that has recently attracted interest is the use of bone collagen proteins. We developed a method similar to DNA barcoding that reads collagen protein sequences in bone and automatically determines the species by performing sequence database searches. We tested our method using bone samples from 30 vertebrate species ranging from mammals to fish.
Project description:We reported a Concanavalin A-based Barcoding Strategy (CASB) for single-cell and single-nucleus sample multiplexing, which could be followed by different single-cell sequencing techniques. The method involves minimal sample processing, thereby preserving intact transcriptomic or epigenomic patterns. Besides sample multiplexing, the CASB could further improve data quality through doublet identification.
Project description:We reported a Concanavalin A-based Barcoding Strategy (CASB) for single-cell and single-nucleus sample multiplexing, which could be followed by different single-cell sequencing techniques. The method involves minimal sample processing, thereby preserving intact transcriptomic or epigenomic patterns. Besides sample multiplexing, the CASB could further improve data quality through doublet identification.
Project description:We reported a Concanavalin A-based Barcoding Strategy (CASB) for single-cell and single-nucleus sample multiplexing, which could be followed by different single-cell sequencing techniques. The method involves minimal sample processing, thereby preserving intact transcriptomic or epigenomic patterns. Besides sample multiplexing, the CASB could further improve data quality through doublet identification.
Project description:We reported a Concanavalin A-based Barcoding Strategy (CASB) for single-cell and single-nucleus sample multiplexing, which could be followed by different single-cell sequencing techniques. The method involves minimal sample processing, thereby preserving intact transcriptomic or epigenomic patterns. Besides sample multiplexing, the CASB could further improve data quality through doublet identification.
Project description:Biological invasions have the potential to alter ecosystem processes profoundly, but invaders are rarely found alone. Interactions between different invasive alien species, and their cumulative impact on ecosystem functioning, have led to hypotheses of invasion meltdown whereby effects become additive leading to further ecosystem stress. Invasive riparian plants (e.g., Rhododendron ponticum) deposit leaf litter in freshwaters, which may be unconsumed by indigenous species, potentially affecting habitat heterogeneity and flow of energy to the food web. However, invasive alien decapod crustaceans are effective consumers of leaf litter, and it was hypothesized that they would also consume inputs of invasive riparian leaf litter. This study shows that invasive alien signal crayfish (Pacifastacus leniusculus) and Chinese mitten crab (Eriocheir sinensis) effectively break down different types of leaf litter, including invasive alien R. ponticum, at higher rates than indigenous white-clawed crayfish. Secondary products were more varied, with more fine particulate organic matter generated for the less palatable alien leaf litter species. Leaf species caused different changes in body mass of decapods but effects were heterogeneous by leaf and decapod: P. leniusculus showed lower mass loss when consuming R. ponticum while E. sinensis lost mass when consuming A. pseudoplatanus. Impacts of riparian invasions on detritus accumulation in freshwaters are thus potentially buffered by invasive alien decapods, illustrating a need for a more detailed consideration of both positive and negative interspecific feedbacks during biological invasions.
Project description:We reported a Concanavalin A-based Barcoding Strategy (CASB) for single-cell and single-nucleus sample multiplexing, which could be followed by different single-cell sequencing techniques. The method involves minimal sample processing, thereby preserving intact transcriptomic or epigenomic patterns. Besides sample multiplexing, the CASB could further improve data quality through doublet identification.