Project description:Macaque species share over 93% genome homology with humans and develop many disease phenotypes similar to those of humans, making them valuable animal models for the study of human diseases (e.g.,HIV and neurodegenerative diseases). However, the quality of genome assembly and annotation for several macaque species lags behind the human genome effort. To close this gap and enhance functional genomics approaches, we employed a combination of de novo linked-read assembly and scaffolding using proximity ligation assay (HiC) to assemble the pig-tailed macaque (Macaca nemestrina) genome. This combinatorial method yielded large scaffolds at chromosome-level with a scaffold N50 of 127.5 Mb; the 23 largest scaffolds covered 90% of the entire genome. This assembly revealed large-scale rearrangements between pig-tailed macaque chromosomes 7, 12, and 13 and human chromosomes 2, 14, and 15. We subsequently annotated the genome using transcriptome and proteomics data from personalized induced pluripotent stem cells (iPSCs) derived from the same animal. Reconstruction of the evolutionary tree using whole genome annotation and orthologous comparisons among three macaque species, human and mouse genomes revealed extensive homology between human and pig-tailed macaques with regards to both pluripotent stem cell genes and innate immune gene pathways. Our results confirm that rhesus and cynomolgus macaques exhibit a closer evolutionary distance to each other than either species exhibits to humans or pig-tailed macaques. These findings demonstrate that pig-tailed macaques can serve as an excellent animal model for the study of many human diseases particularly with regards to pluripotency and innate immune pathways.
Project description:DNA methylation data from several primate species profiled on the mammalian methylation array (HorvathMammalMethylChip40) which focuses on highly conserved CpGs across mammalian species. We selected a total of 91 samples from animals representing 26 strepsirrhine species, in most cases, the entire lifespan, from immature (infant or juvenile) to senile stages: 68 samples from peripheral blood, 23 samples from skin Blood and skin samples from many different primates. We profiled the following species: Cheirogaleus medius (Fat-tailed dwarf lemur), Daubentonia madagascariensis (Aye-aye), Eulemur albifrons (White-headed lemur), Eulemur collaris (Collared brown lemur), Eulemur coronatus (Crowned lemur), Eulemur flavifrons (Blue-eyed black lemur), Eulemur fulvus (Brown lemur), Eulemur macaco (Black lemur), Eulemur mongoz (Mongoose lemur), Eulemur rubriventer (Red-bellied lemur), Eulemur rufus (Red-fronted lemur), Eulemur sanfordi (Sanford's brown lemur), Galago moholi (South African galago), Hapalemur griseus (Bamboo lemur), Lemur catta (Ring-tailed lemur), Loris tardigradus (Slender loris), Microcebus murinus (Gray mouse lemur), Mirza zaza (Northern giant mouse lemur), Nycticebus coucang (Slow loris), Otolemur crassicaudatus (Greater galago), Perodicticus potto (Potto), Propithecus diadema (Diademed sifaka), Propithecus tattersalli (Golden-crowned sifaka), Varecia rubra (Red ruffed lemur). Peripheral blood was collected through venipuncture with standard procedures, either during a routine veterinary procedure or at time of necropsy. Skin tissues were collected during necropsies.
Project description:Genome wide DNA methylation profiling of normal and APP/PSEN1 mice. A custom Illumina Golden Gate DNA methylation Beadchip was used to obtain DNA methylation profiles across approximately 800 CpGs. Bisulphite converted DNA from the 96 samples were hybridised to the Illumina custom golden gate DNA methylation array.