Project description:Microbial fermentation is involved in the processing of a dark tea popular for centuries in Northwest China which has shown many health benefits. This study will examine anti-obesity, hyperlipidemic and hyperglycemic effects of CGMCC No.8730 Eurotium cristatum (EC) fermented dark tea (8730DT).
Project description:The fungi present during pile-fermentation of Sichuan dark tea play a pivotal role in the development of its aroma and physical characteristics. Samples of tea leaves were collected on days 0 (YC-raw material), 8 (W1-first turn), 16 (W2-second turn), 24 (W3-third turn), and 32 (W4-out of pile) during pile-fermentation. High-throughput sequencing revealed seven phyla, 22 classes, 41 orders, 85 families, 128 genera, and 184 species of fungi. During fermentation, the fungal diversity index declined from the W1 to W3 stages and then increased exponentially at the W4 stage. A bar plot and heatmap revealed that Aspergillus, Thermomyces, Candida, Debaryomyces, Rasamsonia, Rhizomucor, and Thermoascus were abundant during piling, of which Aspergillus was the most abundant. Cluster analysis revealed that the W4 stage of fermentation is critical for fungal growth, diversity, and the community structure in Sichuan dark tea. This study revealed the role of fungi during pile-fermentation in the development of the essence and physical characteristics of Sichuan dark tea. This study comes under one of the Sustainable Development Goals of United Nations Organization (UNO) to "Establish Good Health and Well-Being."
Project description:This is a dataset that includes LCMS analysis results of Hunan Fuzhuan brick tea, as well as the solid fermentation of some fungi from the tea material.
Project description:Bacteria and fungi present during pile-fermentation of Sichuan dark tea play a key role in the development of its aesthetic properties, such as color, taste, and fragrance. In our previous study, high-throughput sequencing of dark tea during fermentation revealed Aspergillus was abundant, but scarce knowledge is available about bacterial communities during pile-fermentation. In this study, we rigorously explored bacterial diversity in Sichuan dark tea at each specific stage of piling. Analysis of cluster data revealed 2,948 operational taxonomic units, which were divided into 42 phyla, 98 classes, 247 orders, 461 families, 1,052 genera, and 1,888 species. Certain members of the family Enterobacteriaceae were dominant at early stages of fermentation YC, W1, and W2; Pseudomonas at middle stage W3; and the highest bacterial diversity was observed at the final quality-determining stage W4. Noticeably, probiotics, such as Bacillus, Lactobacillus, Bifidobacterium, and Saccharopolyspora were also significantly higher at the quality-determining stage W4. Our findings might help in precise bacterial inoculation for probiotic food production by increasing the health benefits of Sichuan dark tea. This research also falls under the umbrella of the "Establish Good Health and Well-Being" Sustainable Development Goals of the United Nations Organization.
Project description:Medicine-food homology is a long-standing concept in traditional Chinese medicine. YiNianKangBao (YNKB) tea is a medicine-food formulation based on Sichuan dark tea (Ya'an Tibetan tea), which is traditionally used for its lipid-lowering properties. In this study, we evaluated the effects of YNKB on dyslipidemia and investigated the mechanism underlying its correlation with gut microbiota and serum metabolite regulation. Wild-type mice were fed a normal diet as a control. Male ApoE-/- mice were randomly divided into three high-fat diet (HFD) groups, a model group, and two treated groups (100, 400 mg/kg/d for low, high-dose), and fed by gavage for 12 weeks. Serum lipid levels, composition of gut microbiota, and serum metabolites were then analyzed before treatment with YNKB. We extracted the ingredients of YNKB in boiled water for one hour. YNKB supplementation at a high dose of 400 mg/kg/day reduced bodyweight gains (relative epididymal fat pad and liver weight), and markedly attenuated serum lipid profiles and atherosclerosis index, with no significant differences present between the low-dose treatment and HFD groups. Gut microbiota and serum metabolic analysis indicated that significant differences were observed between normal, HFD, and YNKB treatment groups. These differences in gut microbiota exhibited strong correlations with dyslipidemia-related indexes and serum metabolite levels. Oral administration of high-dose YNKB also showed significant lipid-lowering activity against hyperlipidemia in apoE-deficient mice, which might be associated with composition alterations of the gut microbiota and changes in serum metabolite abundances. These findings highlight that YNKB as a medicine-food formulation derived from Sichuan dark tea could prevent dyslipidemia and improve the understanding of its mechanisms and the pharmacological rationale for preventive use.