Project description:Investigation of the genetic diversity of Emiliania huxleyi, genomic DNA from 15 different strains were compared with the genomic DNA of the sequenced E. huxleyi strain CCMP1516. Gephyrocapsa oceanica and Isochrysis galbana as phylogenetic closely related taxa were used as out-groups.
Project description:There are very few studies exploring the genetic diversity of tick-borne encephalitis complex viruses. Most of the viruses have been sequenced using capillary electrophoresis, however, very few viruses have been analyzed using deep sequencing to look at the genotypes in each virus population. In this study, different viruses and strains belonging to the tick-borne encephalitis complex were sequenced and genetic diversity was analyzed. Shannon entropy and single nucleotide variants were used to compare the viruses. Then genetic diversity was compared to the phylogenetic relationship of the viruses.
Project description:Natural epigenetic variation provides a source for the generation of phenotypic diversity, but to understand its contribution to phenotypic diversity, its interaction with genetic variation requires further investigation. MethylC-seq from naturally-occurring Arabidopsis accessions
Project description:Little is known about the extent of genetic variability among Entamoeba strains and potential genotypic associations with virulence. Variable phenotypes have been identified for Entamoeba strains. E. histolytica is invasive and causes colitis and liver abscesses, but only in 10% of infected individuals; 90% of subjects remain asymptomatically colonized. E. dispar, a closely related species, appears to be incapable of causing invasive disease. In order to determine the extent of genetic diversity among Entamoeba strains we have developed an E. histolytica genomic DNA microarray and used it to genotype strains of E. dispar and E. histolytica. Based on the identification of divergent genetic loci, all six strains (four EH and two ED) had unique genetic fingerprints. Genomic regions with unusually high levels of divergence were identified indicating that structural or evolutionary pressures are molding selective regions of the Entamoeba genome. Comparison of divergent genetic regions allowed us to readily distinguish between EH and ED, identify novel genetic regions that may be used for strain and species typing, and identity a number of novel potential virulence determinants. Among these are Androgen Inducible Gene1, a CXXC receptor kinase, a peroxiredoxin 1-related gene, a Ras family member gene, a Rab geranylgeranyltransferase, and a gene with a UPF0034 domain. Among the four EH strains, an avirulent strain EH (Rahman) was the most divergent and phylogenetically distinct raising the intriguing possibility that genetic subtypes of E. histolytica may be at least partially responsible for the observed variability in clinical outcomes. Our approach shows the utility of a microarray-based genotyping assay to identify genetic variability between Entamoeba isolates and can readily be applied to the study of clinical isolates. A genotyping experiment design type classifies an individual or group of individuals on the basis of alleles, haplotypes, SNP's. User Defined
Project description:Natural epigenetic variation provides a source for the generation of phenotypic diversity, but to understand its contribution to phenotypic diversity, its interaction with genetic variation requires further investigation.
Project description:Genomic studies of phylogeny, population structure, genetic diversity, speciation, gene flow, demography and selection in Heliconius butterflies.
Project description:Eucalyptus urophylla is a commercially important wood crop plantation species due to its rapid growth, biomass yield, and use as bioenergy feedstock. We characterized the genetic diversity and population structure of 332 E. urophylla individuals from 19 geographically defined E. urophylla populations with a reliability of 14,468 single nucleotide polymorphisms (SNPs). We compared the patterns of genetic variation among these 19 populations. High levels of genetic diversity were observed throughout the 19 E. urophylla populations based on genome-wide SNP data (HE=0.2677 to 0.3487). Analysis with STRUCTURE software, Principal component analysis (PCA) and a neighbor-joining (NJ) tree indicated that E. urophylla populations could be divided into three groups, and moderate and weak population structure was observed with pairwise genetic differentiation (FST) values ranging from −0.09 to 0.074. The low genetic diversity and shallow genetic differentiation found within the 19 populations may be a consequence of their pollination system and seed dispersal mechanism. In addition, 55 core germplasms of E. urophylla were constructed according to the genetic marker data. The genome-wide SNPs we identified will provide a valuable resource for further genetic improvement and effective use of the germplasm resources.