Project description:Stenotrophomonas maltophilia K279a diverges into subpopulations with distinct but reversible phenotypes of small and big colonies when challenged with ampicillin. This observation is consistent with the formation of long cell chains during exponential growth phase and the occurrence of mainly coccoid– or rod-shaped cells in liquid media. Further, scanning electron micrographs of SMK279a revealed that cells formed gigantic outer membrane vesicles in response to β-lactam treatment. RNA-seq analysis of small vs. big colonies unveiled that cells regulate at least seven genes differentially among colony morphotypes. Among those were the blaL1 and blaL2 genes the most strongly regulated ones with an eleven- and six-fold increased transcription, respectively. Further studies with promoter fusions of blaL1 and blaL2 genes implied that expression of both genes is also subject to high levels of phenotypic heterogeneous expression on a single cell level. Additional RNA-seq analysis of this homogenously versus heterogeneously blaL2 expressing cells identified comE homologue as differentially expressed, in which by the expression of extra copies of comE in S. maltophilia K279a reduced the level of those cells that were in a blaL2-ON model to 1% or lower. Together with genome-wide sequence analysis of cells from the different colony morphotypes, the data presented here suggests that phenotypic heterogeneity in S. maltophilia K279a is a result of non-genetic variations within isogenic populations and also polymorphisms in this strain do not influence β-lactamase resistance phenotype.
Project description:Pectobacterium are Gram-negative rods of the family Pectobacteriaceae. They are the causative agent of soft rot diseases of crops and ornamental plants. However, their virulence mechanisms are not yet fully elucidated. Membrane vesicles (MVs) are universally released by bacteria and are be-lieved to play an important role in pathogenicity, and survival of bacteria in the environment. Our study investigates the role of MVs in the virulence of Pectobacterium. The results indicate that the morphology and yields of MVs depend on medium composition. In polygalacturonic acid (PGA) supplemented media, Pectobacterium produce MVs of a larger size (100-300 nm) apart of vesicles below 100 nm. Proteomic analyses revealed the presence of pectate degrading enzymes in MVs. The pectate plate test and enzymatic assay proved that those enzymes are active and able to de-grade pectates. What is more, pathogenicity test indicated that MVs derived from Pectobacterium were able to induce maceration of Zantedeschia sp. leaves. We also show that MVs of β-lactamase producing strains were able to suppress ampicillin activity and permit the growth of susceptible bacteria. Those findings indicate that MVs of Pectobacterium play an important role in host-pathogen interactions and niche competition with other bacteria. Our research also sheds some light on the mechanism of MVs production. We demonstrate that Pectobacterium strains, which overexpress the green fluorescence protein (GFP), produce more MVs than wild type strains. Moreover, proteomic analysis revealed that GFP was present in MVs. Therefore, we demonstrate that protein sequestration into MVs is not limited strictly to periplasmic proteins and is a common occurrence. Our research highlights the importance of MVs production as a mechanism of cargo delivery in Pectobacterium and an alternative secretion system.