Project description:Inflammatory breast cancer (IBC) is the most aggressive type of advanced breast cancer and is associated with a poor prognosis. We have developed a new model of IBC derivated from the pleural effusion of a 49-year-old woman with metastatic secondary IBC. FC-IBC02 tumor cells were isolated from the pleural effusion and cultured under non-adherent conditions, resulting in the formation of spheroids or mammospheres. FC-IBC02 are triple negative (estrogen receptor negative, progesterone receptor negative and ErbB2 negative) and strongly positive for E-cadherin, beta-catenin and vimentin. FC-IBC02 cells developed breast tumors when they were injected into the mammary fat pad of SCID mice and characteristic tumor emboli were detected. Breast tumor xenografts were poorly differentiated triple negative carcinomas and all injected mice developed metastasis in the lungs and lymph nodes. These IBC tumor cells showed genomic alterations in all chromosomes, with the gains/amplifications more common than the deletions/losses. Duplicated regions were on 1q, 2p, 3q, 8q and 18p and chromosomes 7 and 9. The 8q chromosome arm where the MYC oncogene resides was amplified up to seven fold. Chromothripsis (local chromosome shattering) was observed on chromosome 11q and losses were found on 8p, 11q, 16q and 17p (location of TP53). FC-IBC-02 cells expressed the stem cell marker CD44, EpCAM and strongly expressed EGFR and ALK. In summary, this novel preclinical model demonstrated that IBC is a disease enriched for highly tumorigenic cells which harbor a stem cell phenotype. This IBC model is ideal for the study of the metastatic process and to evaluate targeting therapeutic modalities. Total RNA were isolated from IBC-02, IBC-02 in mammosphere growth, IBC3, SUM149, SUM190, MDA-MB231, and MDA-MB468 cell lines. Affymetrix Human U133 Plus 2.0 arrays were used for whole-genome gene expression assays. Duplicate samples were analyzed for each cell line.
Project description:The main goal of the research was to find some new biomarkers for the monitoring of the Minimal Residual Disease in Acute Lymphoblastic Leukemia patients. Keywords: Search for new Biomarkers
Project description:Inflammatory breast cancer (IBC) is the most aggressive type of advanced breast cancer and is associated with a poor prognosis. We have developed a new model of IBC derivated from the pleural effusion of a 49-year-old woman with metastatic secondary IBC. FC-IBC02 tumor cells were isolated from the pleural effusion and cultured under non-adherent conditions, resulting in the formation of spheroids or mammospheres. FC-IBC02 are triple negative (estrogen receptor negative, progesterone receptor negative and ErbB2 negative) and strongly positive for E-cadherin, beta-catenin and vimentin. FC-IBC02 cells developed breast tumors when they were injected into the mammary fat pad of SCID mice and characteristic tumor emboli were detected. Breast tumor xenografts were poorly differentiated triple negative carcinomas and all injected mice developed metastasis in the lungs and lymph nodes. These IBC tumor cells showed genomic alterations in all chromosomes, with the gains/amplifications more common than the deletions/losses. Duplicated regions were on 1q, 2p, 3q, 8q and 18p and chromosomes 7 and 9. The 8q chromosome arm where the MYC oncogene resides was amplified up to seven fold. Chromothripsis (local chromosome shattering) was observed on chromosome 11q and losses were found on 8p, 11q, 16q and 17p (location of TP53). FC-IBC-02 cells expressed the stem cell marker CD44, EpCAM and strongly expressed EGFR and ALK. In summary, this novel preclinical model demonstrated that IBC is a disease enriched for highly tumorigenic cells which harbor a stem cell phenotype. This IBC model is ideal for the study of the metastatic process and to evaluate targeting therapeutic modalities.
Project description:To comprehensively characterize microRNA (miRNA) expression in breast cancer, we performed the first extensive next-generation sequencing expression analysis of this disease. We sequenced small RNA from tumors with paired samples of normal and tumor-adjacent breast tissue. Our results indicate that tumor identity is achieved mainly by variation in the expression levels of a common set of miRNAs rather than by tissue-specific expression. We also report 361 new, well-supported miRNA precursors. Nearly two-thirds of these new genes were detected in other human tissues and 49% of the miRNAs were found associated with Ago2 in MCF7 cells. Ten percent of the new miRNAs are located in regions with high-level genomic amplifications in breast cancer. A new miRNA is encoded within the ERBB2/Her2 gene and amplification of this gene leads to overexpression of the new miRNA, indicating that this potent oncogene and important clinical marker may have two different biological functions. In summary, our work substantially expands the number of known miRNAs and highlights the complexity of small RNA expression in breast cancer. Sequencing of approximately 18-35 nt small RNAs from paired samples of normal, tumor and tumor-adjacent tissue for five breast cancer patients
Project description:BACKGROUND: Ductal carcinoma in situ (DCIS) is the earliest stage of breast cancer. During DCIS, tumor cells remain inside the mammary duct, growing under a microenvironment characterized by hypoxia, nutrient starvation, and waste product accumulation; this harsh microenvironment promotes genomic instability and eventually cell invasion. However, there is a lack of biomarkers to predict what patients will transition to a more invasive tumor or how DCIS cells manage to survive in this harsh microenvironment. </br> METHODS: In this work, we have developed a microfluidic model that recapitulates the DCIS microenvironment. In the microdevice, a DCIS model cell line was grown inside a luminal mammary duct model, embedded in a 3D hydrogel with mammary fibroblasts. Cell behavior was monitored by confocal microscopy and optical metabolic imaging. Additionally, metabolite profile was studied by NMR whereas gene expression was analyzed by RT-qPCR. </br> FINDINGS: DCIS cell metabolism led to hypoxia and nutrient starvation; revealing an altered metabolism focused on glycolysis and other hypoxia-associated pathways. In response to this starvation and hypoxia, DCIS cells modified the expression of multiple genes, and a gradient of different metabolic phenotypes was observed across the mammary duct model. These genetic changes observed in the model were in good agreement with patient genomic profiles; identifying multiple compounds targeting the affected pathways. In this context, the hypoxia-activated prodrug tirapazamine selectively destroyed hypoxic DCIS cells. </br> INTERPRETATION: The results showed the capacity of the microfluidic model to mimic the DCIS structure, identifying multiple cellular adaptations to endure the hypoxia and nutrient starvation generated within the mammary duct. These findings may suggest new potential therapeutic directions to treat DCIS. In summary, given the lack of in vitro models to study DCIS, this microfluidic device holds great potential to find new DCIS predictors and therapies and translate them to the clinic.
Project description:To comprehensively characterize microRNA (miRNA) expression in breast cancer, we performed the first extensive next-generation sequencing expression analysis of this disease. We sequenced small RNA from tumors with paired samples of normal and tumor-adjacent breast tissue. Our results indicate that tumor identity is achieved mainly by variation in the expression levels of a common set of miRNAs rather than by tissue-specific expression. We also report 361 new, well-supported miRNA precursors. Nearly two-thirds of these new genes were detected in other human tissues and 49% of the miRNAs were found associated with Ago2 in MCF7 cells. Ten percent of the new miRNAs are located in regions with high-level genomic amplifications in breast cancer. A new miRNA is encoded within the ERBB2/Her2 gene and amplification of this gene leads to overexpression of the new miRNA, indicating that this potent oncogene and important clinical marker may have two different biological functions. In summary, our work substantially expands the number of known miRNAs and highlights the complexity of small RNA expression in breast cancer.