Project description:Technology for crosslinking and immunoprecipitation followed by sequencing (CLIP-seq) has identified the transcriptomic targets of hundreds of RNA-binding proteins in cells. To improve the power of existing and future CLIP-seq datasets, we introduce Skipper, an end-to-end workflow that converts unprocessed reads into annotated binding sites using an improved statistical framework. Compared to existing methods, Skipper on average calls 3.1-4.2 times more transcriptomic binding sites and sometimes >10 times more sites, providing deeper insight into post-transcriptional gene regulation. Skipper also calls binding to annotated repetitive elements and identifies bound elements for 99% of enhanced CLIP experiments. We perform nine translation factor enhanced CLIPs and apply Skipper to learn determinants of translation factor occupancy including transcript region, sequence, and subcellular localization. Furthermore, we observe depletion of genetic variation in occupied sites and nominate transcripts subject to selective constraint because of translation factor occupancy. Skipper offers fast, easy, customizable analysis of CLIP-seq data.
Project description:Proteome profiles of three tissues (gills, hemolymph, hepatopancreas) from Palaemon serratus established by next-generation proteomics
Project description:C5aR1, a receptor for the complement activation proinflammatory fragment, C5a, is primarily expressed on cells of the myeloid lineage, and to a lesser extent on endothelial cells and neurons in brain. Previous work demonstrated C5aR1 antagonist, PMX205, decreased amyloid pathology and suppressed cognitive deficits in Alzheimer Disease (AD) mouse models. In the Arctic AD mouse model, genetic deletion of C5aR1 prevented behavior deficits at 10 months. However, the molecular mechanisms of this protection has not been definitively demonstrated. To understand the role of microglial C5aR1 in the Arctic AD mouse model, we have taken advantage of the CX3CR1GFP and CCR2RFP reporter mice to distinguish microglia as GFP-positive and infiltrating monocytes as GFP and RFP positive, for subsequent transcriptome analysis on specifically sorted myeloid populations from wild type and AD mouse models. Immunohistochemical analysis of mice aged to 2, 5, 7 and 10 months showed no change in amyloid beta (Ab) deposition in the Arctic C5aR1 knockout (KO) mice relative to that seen in the Arctic mice. Of importance, no CCR2+ monocytes/macrophages were found near the plaques in the Arctic brain with or without C5aR1. RNA-seq analysis on microglia from these mice identified inflammation related genes as differentially expressed, with increased expression in the Arctic mice relative to wildtype and decreased expression in the Arctic/C5aR1KO relative to Arctic. In addition, phagosomal-lysosomal proteins and protein degradation pathways that were increased in the Arctic mice were further increased in the Arctic/C5aR1KO mice. These data are consistent with a microglial polarization state with restricted induction of inflammatory genes and enhancement of clearance pathways.
Project description:The objective of this study was to identify the different functional genes involved in key biogeochemical cycles in thehigh Arctic regions. Understanding the microbial diversity in the Arctic region is an important step to determine the effects of climate change on these areas.
Project description:To carry out population genetics analyses of the Arctic gregion we carried out Illumina Bead-Array-based enotyping on 18 samples from Greenland.
Project description:The objective of this study was to identify the different functional genes involved in key biogeochemical cycles in the low Arctic regions. Understanding the microbial diversity in the Arctic region is an important step to determine the effects of climate change on these areas.