Genome sequence of smooth tubercle bacilli - strain STB-E
Ontology highlight
ABSTRACT: Whole genome sequencing of chromosomal DNA of strain STB-E (CIPT 140070002) by Illumina HiSeq (single lane) assembled by the use of Velvet software and manual contig ordering
Project description:Whole genome sequencing of chromosomal DNA of strain STB-H (CIPT 140070013) by Illumina HiSeq (single lane) assembled by the use of Velvet software and manual contig ordering
Project description:Whole genome sequencing of chromosomal DNA of strain STB-G (CIPT 140070005) by Illumina HiSeq (single lane) assembled by the use of Velvet software and manual contig ordering
Project description:Whole genome sequencing of chromosomal DNA of strain STB-I (CIPT 140070007) by Illumina HiSeq (single lane) assembled by the use of Velvet software and manual contig ordering
Project description:Smooth tubercle bacilli (STB) including "Mycobacterium canettii" are members of the Mycobacterium tuberculosis complex (MTBC), which cause non-contagious tuberculosis in human. This group comprises <100 isolates characterized by smooth colonies and cordless organisms. Most STB isolates have been obtained from patients exposed to the Republic of Djibouti but seven isolates, including the three seminal ones obtained by Georges Canetti between 1968 and 1970, were recovered from patients in France, Madagascar, Sub-Sahara East Africa, and French Polynesia. STB form a genetically heterogeneous group of MTBC organisms with large 4.48?±?0.05?Mb genomes, which may link Mycobacterium kansasii to MTBC organisms. Lack of inter-human transmission suggested a yet unknown environmental reservoir. Clinical data indicate a respiratory tract route of contamination and the digestive tract as an alternative route of contamination. Further epidemiological and clinical studies are warranted to elucidate areas of uncertainty regarding these unusual mycobacteria and the tuberculosis they cause.
Project description:The human tubercle bacillus Mycobacterium tuberculosis can synthesize NAD(+) using the de novo biosynthesis pathway or the salvage pathway. The salvage pathway of the bovine tubercle bacillus Mycobacterium bovis was reported defective due to a mutation in the nicotinamidase PncA. This defect prevents nicotinic acid secretion, which is the basis for the niacin test that clinically distinguishes M. bovis from M. tuberculosis. Surprisingly, we found that the NAD(+)de novo biosynthesis pathway (nadABC) can be deleted from M. bovis, demonstrating a functioning salvage pathway. M. bovisDeltanadABC fails to grow in mice, whereas M. tuberculosisDeltanadABC grows normally in mice, suggesting that M. tuberculosis can acquire nicotinamide from its host. The introduction of M. tuberculosis pncA into M. bovisDeltanadABC is sufficient to fully restore growth in a mouse, proving that the functional salvage pathway enables nicotinamide acquisition by the tubercle bacilli. This study demonstrates that NAD(+) starvation is a cidal event in the tubercle bacilli and confirms that enzymes common to the de novo and salvage pathways may be good drug targets.
Project description:Tuberculosis (TB) leads to the death of 1.7 million people annually. The failure of the bacille Calmette-Guérin vaccine, synergy between AIDS and TB, and the emergence of drug resistance have worsened this situation. It is imperative to delineate the mechanisms employed by Mycobacterium tuberculosis to successfully infect and persist in mammalian lungs.Nonhuman primates (NHPs) are arguably the best animal system to model critical aspects of human TB. We studied genes essential for growth and survival of M. tuberculosis in the lungs of NHPs experimentally exposed to aerosols of an M. tuberculosis transposon mutant library.Mutants in 108 M. tuberculosis genes (33.13% of all genes tested) were attenuated for in vivo growth. Comparable studies have reported the attenuation of only approximately 6% of mutants in mice. The M. tuberculosis mutants attenuated for in vivo survival in primates were involved in the transport of various biomolecules, including lipid virulence factors; biosynthesis of cell-wall arabinan and peptidoglycan; DNA repair; sterol metabolism; and mammalian cell entry.Our study highlights the various virulence mechanisms employed by M. tuberculosis to overcome the hostile environment encountered during infection of primates. Prophylactic approaches aimed against bacterial factors that respond to such in vivo stressors have the potential to prevent infection at an early stage, thus likely reducing the extent of transmission of M. tuberculosis.
Project description:In Mycobacterium tuberculosis, the PhoPR two-component regulatory system controls production and secretion of proteins and lipid virulence effectors. Several mutations, present in phoR of Mycobacterium canettii relative to M. tuberculosis, impact the expression of the PhoP regulon and the pathogenicity of the strains. Here, we analyse by RNA-seq the expression profile of PhoP-regulated genes between the two M. tuberculosis strains H37Rv and HN878 and the two M. canettii isolates STB-Ks and STB-Kr.
Project description:RationaleResuscitation-promoting factors (Rpfs) are a family of secreted proteins produced by Mycobacterium tuberculosis (Mtb) that stimulate mycobacterial growth. Although mouse infection studies show that they support bacterial survival and disease reactivation, it is currently unknown whether Rpfs influence human infection. We hypothesized that tuberculous sputum might include a population of Rpf-dependent Mtb cells.ObjectivesTo determine whether Rpf-dependent Mtb cells are present in human sputum and explore the impact of chemotherapy on this population.MethodsIn tuberculous sputum samples we compared the number of cells detected by conventional agar colony-forming assay with that determined by limiting dilution, most-probable number assay in the presence or absence of Rpf preparations.Measurements and main resultsIn 20 of 25 prechemotherapy samples from separate patients, 80-99.99% of the cells demonstrated by cultivation could be detected only with Rpf stimulation. Mtb cells with this phenotype were not generated on specimen storage or by inoculating sputum samples with a selection of clinical isolates; moreover, Rpf dependency was lost after primary isolation. During chemotherapy, the proportion of Rpf-dependent cells was found to increase relative to the surviving colony-forming population.ConclusionsSmear-positive sputum samples are dominated by a population of Mtb cells that can be grown only in the presence of Rpfs. These intriguing proteins are therefore relevant to human infection. The Rpf-dependent population is invisible to conventional culture and is progressively enhanced in relative terms during chemotherapy, indicating a form of phenotypic resistance that may be significant for both chemotherapy and transmission.
Project description:Mycobacterium bovis, the agent of bovine tuberculosis, causes an estimated $3 billion annual losses to global agriculture due, in part, to the limitations of current diagnostics. Development of next-generation diagnostics requires a greater understanding of the interaction between the pathogen and the bovine host. Therefore, to explore the early response of the alveolar macrophage to infection, we report the first application of RNA-sequencing to define, in exquisite detail, the transcriptomes of M. bovis-infected and non-infected alveolar macrophages from ten calves at 2, 6, 24 and 48 hours post-infection. Differentially expressed sense genes were detected at these time points that revealed enrichment of innate immune signalling functions, and transcriptional suppression of host defence mechanisms (e.g., lysosome maturation). We also detected differentially expressed natural antisense transcripts, which may play a role in subverting innate immune mechanisms following infection. Furthermore, we report differential expression of novel bovine genes, some of which have immune-related functions based on orthology with human proteins. This is the first in-depth transcriptomics investigation of the alveolar macrophage response to the early stages of M. bovis infection and reveals complex patterns of gene expression and regulation that underlie the immunomodulatory mechanisms used by M. bovis to evade host defence mechanisms.