Project description:RNAseq and LC/MS metabolomics analysis of C. difficile strain 630 grown in BHIS media with 50% (vol/vol) faecal water added, compared with control BHIS containing only the additional PBS used for prep of Faecal water. Cells grown in biological triplicates to late log phase (T=6h) prior to harvest. Goal was to determine changes in gene expression caused by exposure to Faecal water, and changes in the metabolite profile of faecal water containing medium when incubated with actively growing C. difficile cells
Project description:We investigated the biological effects of ZEA exposure on donkey granulosa cells by using RNA-seq analysis. ZEA at 10 and 30 μM were administered to granulosa cells within 72 hours of in vitro culture. ZEA at 10 μM significantly altered the tumorigenesis associated genes in donkey granulosa cells. Exposure to 10 and 30 μM ZEA treatment significantly reduced mRNA expression of PTEN, TGFβ, ATM, and CDK2 genes, particularly, the ZEA treatment significantly increased the expression of PI3K and AKT genes. Furthermore, immunofluorescence, RT-qPCR, and Western blot analysis verified the gene expression of ZEA-exposed granulosa cells. Collectively, these results demonstrated the deleterious effect of ZEA exposure on the induction of ovarian cancer related genes via the PTEN/PI3K/AKT signaling pathway in donkey granulosa cells in vitro.
Project description:In this randomised placebo-controlled trial, irritable bowel syndrome (IBS) patients were treated with faecal material from a healthy donor (n=8, allogenic FMT) or with their own faecal microbiota (n=8, autologous FMT). The faecal transplant was administered by whole colonoscopy into the caecum (30 g of stool in 150 ml sterile saline). Two weeks before the FMT (baseline) as well as two and eight weeks after the FMT, the participants underwent a sigmoidoscopy, and biopsies were collected at a standardised location (20-25 cm from the anal verge at the crossing with the arteria iliaca communis) from an uncleansed sigmoid. In patients treated with allogenic FMT, predominantly immune response-related genes sets were induced, with the strongest response two weeks after FMT. In patients treated with autologous FMT, predominantly metabolism-related gene sets were affected.
Project description:In this study, 3,869 donkey skeletal muscle lncRNAs were identified using RNA-Seq along with a stringent screening procedure in the longissimus dorsi (LD) and gluteal (G) muscles. These lncRNAs share many characteristics with other mammalian lncRNAs, such as shorter open reading frames (ORFs) and lower expression levels than mRNAs. Furthermore, in pairwise comparisons between libraries of the same stage for two genetic types of male Dezhou donkey, 73 differentially expressed lncRNAs were common to all muscle tissues.
Project description:A comprehensive glycosylation profile of donkey lactoferrin, isolated by ion exchange chromatography from an individual milk sample, was obtained by means of chymotryptic digestion, TiO2 and HILIC enrichment, reversed-phase high performance liquid chromatography, electrospray mass spectrometry, and high collision dissociation fragmentation. The results obtained allowed the identification of 26 different glycan structures, including high mannose, complex and hybrid N-glycans, linked to the protein backbone via an amide bond to asparagine residues located at the positions 137, 281 and 476. Altogether, the N-glycan structures determined revealed that in donkey milk lactoferrin most of the N-glycans identified are neutral complex/hybrid. Actually, 10 neutral non-fucosylated complex/hybrid N-glycans and 4 neutral fucosylated complex/hybrid N-glycans were found. In addition, 2 high mannose N-glycans, 4 sialylated fucosylated complex/hybrid N-glycans and 6 sialylated non-fucosylatedN-glycans, one of which containing N-glycolylneuramin acid (Neu5Gc), were found. A comparison of the glycosylation profile of donkey milk lactoferrin with respect to that of human, bovine and goat milk lactoferrin is reported.